본문으로 이동

제2 기본 형식

위키백과, 우리 모두의 백과사전.

미분기하학에서 제2 기본 형식(第二基本形式, 영어: second fundamental form)은 매끄러운 다양체의 부분 다양체의 모양을 나타내는 이차 형식이다.

정의

[편집]

아핀 접속 가 주어진 매끄러운 다양체 속의 부분 다양체 가 주어졌다고 하자. 그렇다면 제2 기본 형식 위의 텐서장이다. 이는 매끄러운 벡터 다발 매끄러운 단면이며, 그 정의는 다음과 같다. 매장 함수 이 주어졌을 때,

여기서 법다발이며, 에서 으로 가는 사영 연산자이다. 만약 의 접속의 비틀림이 0이라면 제2 기본 형식은 대칭 텐서이다.

유클리드 공간의 2차원 곡면

[편집]

고전적으로, 제2 기본 형식은 유클리드 공간 속의 2차원 곡면 에 대하여 주어진다. 곡면에 좌표 를 주었을 때, 로 주어진다. 이 경우 법선벡터

이다. 이 경우, 제2 기본 형식은 다음과 같은 2×2 대칭행렬이다.

즉, 헤세 행렬법선벡터의 내적이다. 행렬 표현에서 기호 은 전통적이다.

참고 문헌

[편집]
  • 원대연; 이난이 (2014). 《미분기하학 입문》. 경문사. ISBN 978-89-6105-780-6. 2014년 5월 12일에 원본 문서에서 보존된 문서. 2014년 5월 11일에 확인함. 
  • Guggenheimer, Heinrich (1977). 《Differential geometry》 (영어). Dover. ISBN 0-486-63433-7. 
  • Kobayashi, Shoshichi; Katsumi Nomizu (1996). 《Foundations of differential geometry, volume 2》 (영어) New판. Wiley-Interscience. ISBN 0-471-15732-5. 
  • Spivak, Michael (1999). 《A comprehensive introduction to differential geometry, volume 3》 (영어). Publish or Perish. ISBN 0-914098-72-1. 

같이 보기

[편집]

외부 링크

[편집]