Beryl (pierwiastek)
lit ← beryl → bor | |||||||||||||||||||||||||||||||||||||
Wygląd | |||||||||||||||||||||||||||||||||||||
stalowoszary | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
Widmo emisyjne berylu | |||||||||||||||||||||||||||||||||||||
Ogólne informacje | |||||||||||||||||||||||||||||||||||||
Nazwa, symbol, l.a. |
beryl, Be, 4 | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grupa, okres, blok | |||||||||||||||||||||||||||||||||||||
Stopień utlenienia |
II | ||||||||||||||||||||||||||||||||||||
Właściwości metaliczne | |||||||||||||||||||||||||||||||||||||
Właściwości tlenków | |||||||||||||||||||||||||||||||||||||
Masa atomowa | |||||||||||||||||||||||||||||||||||||
Stan skupienia |
stały | ||||||||||||||||||||||||||||||||||||
Gęstość |
1848 kg/m³ | ||||||||||||||||||||||||||||||||||||
Temperatura topnienia |
1287 °C[1] | ||||||||||||||||||||||||||||||||||||
Temperatura wrzenia |
2471 °C[1] | ||||||||||||||||||||||||||||||||||||
Numer CAS | |||||||||||||||||||||||||||||||||||||
PubChem | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
Jeżeli nie podano inaczej, dane dotyczą warunków normalnych (0 °C, 1013,25 hPa) |
Beryl (Be, łac. beryllium) – pierwiastek chemiczny o liczbie atomowej 4, metal należący do drugiej grupy głównej układu okresowego. Stosunkowo rzadko występuje we Wszechświecie, z reguły jako produkt spalacji większych jąder atomowych pod wpływem promieniowania kosmicznego.
W związkach przyjmuje II stopień utlenienia. Naturalnie występuje jedynie w połączeniu z innymi pierwiastkami w minerałach. Ważniejszymi kamieniami szlachetnymi zawierającymi ten pierwiastek są akwamaryn, szmaragd i chryzoberyl.
W postaci wolnej beryl jest twardym, lekkim i kruchym metalem o stalowoszarej barwie. Jedynym jego stabilnym izotopem jest 9
Be. Został odkryty przez Louisa Vauquelina w 1798 roku[6].
Dodany jako pierwiastek stopowy do glinu, miedzi, żelaza i niklu, znacznie zmienia ich właściwości fizyczne. Narzędzia wykonane ze stopów berylu z miedzią są twarde, trwałe i nieiskrzące. W zastosowaniach konstrukcyjnych, połączenie wysokiej sztywności, stabilności termicznej, przewodności cieplnej oraz niskiej gęstości (1,85 gęstości wody) czyni beryl materiałem odpowiednim do produkcji podzespołów samolotów, rakiet, statków kosmicznych i satelitów. Z powodu niskiej gęstości i masy atomowej przepuszcza promienie rentgenowskie oraz innego rodzaju promieniowanie jonizujące. Z tego względu stanowi najpowszechniejszy materiał do produkcji okien w aparaturze rentgenowskiej oraz komponentów wykorzystywanych do eksperymentów fizyki cząstek elementarnych. Wysoka przewodność cieplna berylu i tlenku berylu pozwoliła na wykorzystanie w systemach do zarządzania ciepłem.
Komercyjne wykorzystanie tego pierwiastka wymaga zastosowania odpowiedniego systemu odprowadzenia pyłu oraz sterowania przemysłowego ze względu na toksyczność pyłów zawierających beryl. U niektórych ludzi mogą one wywołać zagrażającą życiu chorobę alergiczną, zwaną berylozą. Uczulenie na beryl dotyczy około 16% populacji.
Historia
[edytuj | edytuj kod]Beryl odkrył francuski chemik Louis Nicolas Vauquelin podczas badania składu minerałów o tej samej nazwie, głównie szmaragdu. O odkryciu poinformował 15 lutego 1798 roku, na posiedzeniu Akademii Francuskiej. Czysty beryl po raz pierwszy otrzymał francuski chemik Paul Lebeau (1898) podczas elektrolizy stopionego fluoroberylanu sodowego NaBeF
3[6].
Występowanie
[edytuj | edytuj kod]Zawartość berylu w górnych warstwach skorupy Ziemi wynosi 0,0002%, występuje w minerałach takich jak beryl (Be
3Al
2[Si
6O
18]), chryzoberyl (Al
2BeO
4) lub fenakit (Be
2SiO
4). Niektóre odmiany minerału berylu (szmaragd, akwamaryn, heliodor) uznawane są za kamienie szlachetne.
Otrzymywanie
[edytuj | edytuj kod]Metaliczny beryl można wydzielić elektrolitycznie ze stopionych soli – BeCl
2 i BeF
2.
Właściwości
[edytuj | edytuj kod]Właściwości fizyczne
[edytuj | edytuj kod]Beryl jest twardym, kruchym metalem o zwartej heksagonalnej strukturze krystalicznej. Charakteryzuje się wyjątkowo wysoką sztywnością (moduł Younga 287 GPa[7]) i wysoką temperaturą topnienia, wynoszącą 1287 °C[1].
Właściwości chemiczne
[edytuj | edytuj kod]W związkach chemicznych występuje na +II stopniu utlenienia. Nie roztwarza się na zimno w kwasie azotowym (ulega pasywacji). Aby reakcja berylu z wodą zaszła efektywnie należy podgrzać ją niemal do wrzenia. Rozcieńczone kwasy siarkowy i solny reagują z berylem już w temperaturze pokojowej. Z powodu amfoterycznych właściwości rozpuszcza się w roztworach wodorotlenków metali alkalicznych:
- Be + 2OH−
+ 2H
2O → [Be(OH)
4]2−
+ H
2↑
Stosunkowo duża elektroujemność sprawia, że beryl łączy się z innymi pierwiastkami poprzez wiązania kowalencyjne. Sole berylu są podatne na hydrolizę, w wyniku której powstają kationy tetraakwaberylowe [Be(H
2O)
4]2+
, wchodzące w skład soli kompleksowych o charakterze jonowym, np. [Be(H
2O)
4]SO
4 i [Be(H
2O)
4]Cl
2[8]. Beryl może tworzyć także inne związki kompleksowe, np. [BeF
4]2−
.
Z tlenem beryl tworzy tlenek berylu (BeO, krystalizuje w układzie heksagonalnym). Znane są także związki berylu z wodorem BeH
2, siarką – BeS, azotem – Be
3N
2, węglem – Be
2C.
Wodorotlenek berylu Be(OH)
2 jest trudno rozpuszczalny w wodzie i ma własności amfoteryczne, z silnymi zasadami dając berylany, np. Na
2BeO
2 i K
2BeO
2. Siarczan berylu BeSO
4 jest dobrze rozpuszczalny w wodzie (41,3 g/100 cm³ w 25 °C), natomiast węglan BeCO
3·4H
2O rozpuszcza się dużo słabiej (0,36 g/100 cm³ w 0 °C)[9].
Właściwości biologiczne
[edytuj | edytuj kod]Beryl prawdopodobnie nie ma znaczenia biologicznego; dotychczas nie stwierdzono wykorzystywania tego pierwiastka przez organizmy żywe. Związki berylu są silnie trujące, wywołując berylozę, głównie przy kontakcie ze skórą lub poprzez wdychanie pyłu berylowego[10].
Zastosowanie
[edytuj | edytuj kod]Technika jądrowa
[edytuj | edytuj kod]Ze względu na mały przekrój czynny wychwytu neutronów termicznych, metaliczny beryl stosowany jest jako moderator spowalniający neutrony w reaktorach jądrowych, oraz do wyrobu prętów sterujących i awaryjnych. W mieszaninie z pierwiastkami emitującymi cząstki alfa stosowany jest jako źródło neutronów. Będąc dobrym reflektorem neutronów, wykorzystywany jest w broni jądrowej jako osłona (reflektor) ładunku jądrowego, co pozwala na zmniejszenie masy krytycznej.
Technika radiacyjna
[edytuj | edytuj kod]Beryl bardzo słabo pochłania promieniowanie rentgenowskie, co pozwala na stosowanie go do wyrobu okienek w aparatach i mikroskopach rentgenowskich oraz w detektorach promieniowania rentgenowskiego.
Dzięki przezroczystości berylu dla wysokoenergetycznych cząstek naładowanych elektrycznie, wykorzystuje się go do budowy detektorów takiego promieniowania w akceleratorach cząstek elementarnych (np. Wielki Zderzacz Hadronów).
Technika głośnikowa
[edytuj | edytuj kod]Duża sztywność (moduł Younga 287 GPa[7]) i niska gęstość sprawiają, że stosuje się go do wytwarzania membran głośników wysokotonowych charakteryzujących się znacznie lepszymi parametrami od wykonanych typowo z tytanu lub glinu (pasmo przenoszenia 1000 – 40 000 Hz)[11]. Ze względu na toksyczność berylu i jego trudną obróbkę, ich cena jest znacznie wyższa i są produkowane przez niewiele firm[12].
Inne zastosowania
[edytuj | edytuj kod]Beryl może służyć jako dodatek do stopów innych metali, gdzie zwiększa twardość i odporność na korozję[10]. Stop miedzi z berylem jest wykorzystywany w produkcji narzędzi nieiskrzących, elementów sprężystych, podzespołów aparatury chemicznej oraz elementów żaroodpornych. Pył berylowy jest składnikiem stałego paliwa rakietowego o najwyższym impulsie właściwym oraz rakietowych silnikach o zastosowaniach militarnych.
Ze względu na małą gęstość i dobre parametry mechaniczne, beryl wykorzystano do budowy zwierciadeł w Kosmicznym Teleskopie Jamesa Webba[13].
Uwagi
[edytuj | edytuj kod]- ↑ Podana wartość stanowi przybliżoną standardową względną masę atomową (ang. abridged standard atomic weight) publikowaną wraz ze standardową względną masą atomową, która wynosi 9,0121831 ± 0,0000005. Zob. Prohaska i in. 2021 ↓, s. 584.
Przypisy
[edytuj | edytuj kod]- ↑ a b c David R. Lide (red.), CRC Handbook of Chemistry and Physics, wyd. 90, Boca Raton: CRC Press, 2009, s. 4–51, ISBN 978-1-4200-9084-0 (ang.).
- ↑ beryllium, [w:] Classification and Labelling Inventory, Europejska Agencja Chemikaliów [dostęp 2015-03-09] (ang.).
- ↑ Beryllium (nr 265063) (ang.) – karta charakterystyki produktu Sigma-Aldrich (Merck) na obszar Stanów Zjednoczonych. [dostęp 2011-10-02]. (przeczytaj, jeśli nie wyświetla się prawidłowa wersja karty charakterystyki)
- ↑ Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI: 10.1515/pac-2019-0603 (ang.).
- ↑ Beryl (nr 265063) – karta charakterystyki produktu Sigma-Aldrich (Merck) na obszar Polski. [dostęp 2011-10-02]. (przeczytaj, jeśli nie wyświetla się prawidłowa wersja karty charakterystyki)
- ↑ a b Ignacy Eichstaedt: Księga pierwiastków. Warszawa: Wiedza Powszechna, 1973, s. 90–91. OCLC 839118859.
- ↑ a b Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter, 1994. (ang.).
- ↑ John David Lee: Zwięzła chemia nieorganiczna. Warszawa: PWN, 1997, s. 151. ISBN 83-01-12352-4.
- ↑ CRC Handbook of Chemistry and Physics, David R. Lide (red.), wyd. 88, Boca Raton: CRC Press, 2007, s. 4-51, ISBN 978-0-8493-0488-0 (ang.).
- ↑ a b Ryszard Szepke: 1000 słów o atomie i technice jądrowej. Wydawnictwo Ministerstwa Obrony Narodowej, 1982. ISBN 83-11-06723-6. (pol.).
- ↑ Beryllium tweeter. Focal. [dostęp 2017-04-13].
- ↑ John E. Johnson (Jr): Usher Be-718 Bookshelf Speakers with Beryllium Tweeters. Secrets of Home Theater and High Fidelity, 12 listopada 2007. [zarchiwizowane z tego adresu (13 czerwca 2011)]. (ang.).
- ↑ The James Webb Space Telescope: Mirrors. NASA. [dostęp 2010-11-12].
Bibliografia
[edytuj | edytuj kod]- Jerzy Minczewski , Zygmunt Marczenko , Chemia analityczna – 1 podstawy teoretyczne i analiza jakościowa, Warszawa: PWN, 2001, ISBN 83-01-13498-4, ISBN 83-01-13499-2, OCLC 749313943 .
Układ okresowy pierwiastków | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3[i] | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||||||||||||||||||||||||||
1 | H | He | ||||||||||||||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||||||||
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | ||||||||||||
8 | Uue | Ubn | ✱ | |||||||||||||||||||||||||||||||||||||||||
✱ | Ubu | Ubb | Ubt | Ubq | Ubp | Ubh | Ubs | ...[ii] | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||