Pojdi na vsebino

Dirichletova funkcija beta

Iz Wikipedije, proste enciklopedije
Graf Dirichletove funkcije beta na intervalu [−8, 8]

Dirichletova funkcija beta (tudi Catalanova funkcija beta; običajna označba ) je v matematiki in še posebej analitični teoriji števil specialna funkcija, tesno povezana z Riemannovo funkcijo ζ. Je posebni primer Dirichletove L-funkcije, L-funkcije z alternirajočim karakterjem periode 4. Imenuje se po nemškem matematiku Petru Gustavu Lejeuneu Dirichletu in včasih po belgijskem matematiku Eugèneu Charlesu Catalanu.

Definicija

[uredi | uredi kodo]

Dirichletova funkcija β je definirana kot alternirajoča vrsta:[1]

ali enakovredno kot:

kjer je funkcija Γ. V obeh primerih je .

S pomočjo Hurwitzeve funkcije ζ je Dirichletova funkcija β določena kot:[2]

na celi kompleksni -ravnini.

Z Lerchevim transcendentom je določena kot:

ki spet velja za vse kompleksne vrednosti .

Vrsta za Dirichletovo funkcijo β se lahko tvori tudi s pomočjo funkcije poligama:

Funkcijska enačba

[uredi | uredi kodo]

Funkcijska enačba razširi Dirichletovo funkcijo β na levo stran kompleksne ravnine . Dana je z:

Značilnosti

[uredi | uredi kodo]

Posebne vrednosti

[uredi | uredi kodo]

Nekatere najpogosteje rabljene vrednosti Dirichletove funkcije β so:

(OEIS A003881),
Catalanova konstanta, (OEIS A006752),
(OEIS A153071),
(OEIS A175572),
(OEIS A175571),
(OEIS A258814),

kjer je zgoraj zgled funkcije poligama.

Euler je pokazal, da je v splošnem za lihe , racionalni mnogokratnik , torej za poljubno pozitivno celo število :

kjer so Eulerjeva števila. Za celo število velja:

oziroma:

Funkcija je tako enaka nič za vse lihe negativne celoštevilske vrednosti argumenta:

s približne vrednosti β(s) OEIS
1/5 0,5737108471859466493572665
1/4 0,5907230564424947318659591
1/3 0,6178550888488520660725389
1/2 0,6676914571896091766586909 A195103
1 0,7853981633974483096156608 A003881
2 0,9159655941772190150546035 A006752
3 0,9689461462593693804836348 A153071
4 0,9889445517411053361084226 A175572
5 0,9961578280770880640063194 A175571
6 0,9986852222184381354416008 A175570
7 0,9995545078905399094963465 A258814
8 0,9998499902468296563380671 A258815
9 0,9999496841872200898213589 A258816
10 0,9999831640261968774055407

Tanguy Rivoal in Vadim Zudilin sta dokazala, da je vsaj eno od sedmih števil: , , , , , ali iracionalno.[3]

Guillera in Sondow sta leta 2005 dokazala formulo z dvojnim integralom:[4]

Odvajanje

[uredi | uredi kodo]

Odvod za vse je dan z:

Nekatere posebne vrednosti odvodov:

(OEIS A113847),
, (OEIS A078127).

Za pozitivna cela števila velja še naprej:

Glej tudi

[uredi | uredi kodo]

Sklici

[uredi | uredi kodo]
  1. Abramowitz; Stegun (1972), str. 807.
  2. »Dirichlet Beta - Hurwitz zeta relation«. Engineering Mathematics (v angleščini). 8. november 2012. Pridobljeno 25. julija 2015.
  3. Rivoal; Zudilin (2003).
  4. Guillera; Sondow (2008).

Zunanje povezaave

[uredi | uredi kodo]