计算机科学 ›› 2018, Vol. 45 ›› Issue (6A): 493-496.

• 大数据与数据挖掘 • 上一篇    下一篇

流行度划分结合平均偏好权重的协同过滤个性化推荐算法

何佶星,陈汶滨,牟斌皓   

  1. 西南石油大学计算机科学学院 成都610500
  • 出版日期:2018-06-20 发布日期:2018-08-03
  • 作者简介:何佶星(1991-),女,硕士生,CCF会员,主要研究方向为推荐算法、机器学习等,E-mail:[email protected](通信作者);陈汶滨(1965-),男,教授,硕士生导师,主要研究方向为油田信息化、数据库技术与应用、计算机模拟与仿真;牟斌皓(1992-),男,硕士生,CCF会员,主要研究方向为数据挖掘和机器学习。

Coordination Filtering Personalized Recommendation Algorithm Considering Average
Preference Weight and Popularity Division

HE Ji-xing,CHEN Wen-bin,MOU Bin-hao   

  1. School of Computer Science,Southwest Petroleum University,Chengdu 610500,China
  • Online:2018-06-20 Published:2018-08-03

摘要: 提出了一种考虑平均偏好权重的协同过滤个性化推荐算法。该算法分为邻域计算、数据集划分、偏好预测3个阶段。在邻域计算阶段,采用基于欧氏距离的KNN来确定邻域;同时对数据集按照其本身特点设定的流行度阈值进行划分;在预测评分时,对已有的邻域按照流行度选取部分项目,基于项目集的偏好相似度求解用户的平均偏好权重,据此对用户进行先后两次预测,再求平均结果。在Movielens 100K数据集上将所提算法与典型的余弦推荐算法、person推荐算法、基于项目偏好的协调过滤算法和用户属性加权活跃近邻的协同过滤算法进行比较实验,结果表明新算法在MAE上表现的更优秀。

关键词: KNN, 个性化推荐算法, 邻域计算, 流行度划分, 平均偏好权重, 协同过滤

Abstract: This paper presented a new recommendation algorithm which takes into account the average preference weight.The algorithm is divided into three stages:neighborhood computing,data set partitioning and preference prediction.In the neighborhood calculation,the KNN based on the Euclidean distance is used to determine the neighborhood.At the same time,the data set is divided into the data set and the non-popular data set according to the popularity threshold of the data set itself.When the score is predicted,the existing neighborhood selects part of the project accor-ding to the popularity degree,and predicts the user’s average preference weight based on the preference similarity of the item set.The results show that on the Movielens 100K data set,the new algorithm is superior to the typical cosine recommendation algorithm,the person recommendation algorithm,the collaborative filtering algorithm based on the project preference coordination filtering algorithm and the user attribute weighted active neighbor existing algorithms in MAE.

Key words: Average preference weight, Coordination filtering, KNN, Neighborhood calculation, Personalized recommended algorithm, Popularity division

中图分类号: 

  • TP391
[1]李容,李明奇,郭文强.基于改进相似度的协同过滤算法研究[J].计算机科学,2016,43(12):206-208.
[2]徐蕾,杨成,姜春晓,等.协同过滤推荐系统中的用户博弈[J].计算机学报,2016,39(6):1176-1189.
[3]XUE G R,LIN C,YANG Q,et al.Scalable collaborative filtering using cluster-based smoothing[C]∥International ACM Sigir Conference on Research & Development in Information Retrieval.2005:114-121.
[4]姚彬修,倪建成,于苹苹,等.基于多源信息相似度的微博用户推荐算法[J].计算机应用,2017,37(5):1382-1386.
[5]于洪涛,周倩楠,张付志.基于项目流行度和新颖度分类特征的托攻击检测算法[J].工程科学与技术,2017,49(1):176-183.
[6]SHI Y,LARSON M,HANJALIC A.Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering[C]∥Proceedings of the Third ACM Conference on Recommender Systems.ACM,2009:125-132.
[7]BANDA L,BHARADWAJ K K.Evaluation of Collaborative Filtering Based on Tagging with Diffusion Similarity Using Gradual Decay Approach[M]∥Advanced Computing,Networking and Informatics- Volume 1.Springer International Publi-shing,2014:421-428.
[8]黄文明,莫阳.基于文本加权KNN算法的中文垃圾短信过滤[J].计算机工程,2017,43(3):193-199.
[9]郑洁,钱育蓉,杨兴耀,等.基于信任和项目偏好的协调过滤算法[J].计算机应用,201636(10):2784-2788.
[10]王吉源,黎晨,王婵娟.用户属性加权活跃近邻的协同过滤算法[J].计算机应用研究,2016,(12):3625-3629.
[11]SHANG M S,JIN C H,ZHOU T,et al.Collaborative filtering based on multi-channel diffusion [J].Physica A Statistical Mechanics & Its Applications,2009,388(23):4867-4871.
[12]王伟,徐平平,王华君,等.基于概率回归模型和K-最近邻的电子商务个性化推荐方案[J].湘潭大学自科学报,2016,38(1):97-100.
[13]BOBADILLA J,ORTEGA F,HERNANDO A.Recommender systems survey [J].Knowledge-Based Systems,2013,46(1):109-132.
[14]徐雅斌,孙晓晨.位置社交网络的个性化位置推荐[J].北京邮电大学学报,2015,38(5):118-124.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[3] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[4] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[5] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
[6] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[7] 董晓梅, 王蕊, 邹欣开.
面向推荐应用的差分隐私方案综述
Survey on Privacy Protection Solutions for Recommended Applications
计算机科学, 2021, 48(9): 21-35. https://doi.org/10.11896/jsjkx.201100083
[8] 张仁杰, 陈伟, 杭梦鑫, 吴礼发.
基于变分自编码器的不平衡样本异常流量检测
Detection of Abnormal Flow of Imbalanced Samples Based on Variational Autoencoder
计算机科学, 2021, 48(7): 62-69. https://doi.org/10.11896/jsjkx.200600022
[9] 詹皖江, 洪植林, 方路平, 吴哲夫, 吕跃华.
基于对抗性学习的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning
计算机科学, 2021, 48(7): 172-177. https://doi.org/10.11896/jsjkx.200600077
[10] 邵超, 宋淑米.
基于信任关系下用户兴趣偏好的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on User Preference Under Trust Relationship
计算机科学, 2021, 48(6A): 240-245. https://doi.org/10.11896/jsjkx.200700113
[11] 赵志强, 易秀双, 李婕, 王兴伟.
基于GR-AD-KNN算法的IPv6网络DoS入侵检测技术研究
Research on DoS Intrusion Detection Technology of IPv6 Network Based on GR-AD-KNN Algorithm
计算机科学, 2021, 48(6A): 524-528. https://doi.org/10.11896/jsjkx.200500001
[12] 黄铭, 孙林夫, 任春华, 吴奇石.
改进KNN的时间序列分析方法
Improved KNN Time Series Analysis Method
计算机科学, 2021, 48(6): 71-78. https://doi.org/10.11896/jsjkx.200500044
[13] 武建新, 张志鸿.
融合用户评分与显隐兴趣相似度的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on User Rating and Similarity of Explicit and Implicit Interest
计算机科学, 2021, 48(5): 147-154. https://doi.org/10.11896/jsjkx.200300072
[14] 肖诗涛, 邵蓥侠, 宋卫平, 崔斌.
面向协同过滤推荐的新型混合评分函数
Hybrid Score Function for Collaborative Filtering Recommendation
计算机科学, 2021, 48(3): 113-118. https://doi.org/10.11896/jsjkx.200900067
[15] 郝志峰, 廖祥财, 温雯, 蔡瑞初.
基于多上下文信息的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Multi-context Information
计算机科学, 2021, 48(3): 168-173. https://doi.org/10.11896/jsjkx.200700101
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!