Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources
Abstract
:1. Introduction
2. Bibliometric Analysis
3. Hydrosols
3.1. Distillation Processes
3.2. Chemical Characterisation
3.3. Biological Characterisation
3.3.1. Antioxidant Activity
3.3.2. Antimicrobial Activity
4. Applications
4.1. Food Applications
4.1.1. Hydrosols as Natural Additives in the Food Industry
Plant Scientific Name | Extraction and Characterisation Methodologies | Main Results | Reference |
---|---|---|---|
Psoralea bituminosa | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (DPPH, FRAP and β-carotene bleaching assays). | Major compounds: caryophyllene oxide (35.5%) and E-phytol (25.6%); Antioxidant activity: for DPPH (IC50 = 2.60 mg/L), FRAP (0.50–1.75 mg/L), and β-carotene inhibition (IC50 = 0.32 mg/L). | [26] |
Areca catechu and Cocos nucifera | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (total phenolic content, reducing power, DPPH and ABTS assays), antibacterial activity (agar disc diffusion and serial dilution methods). | Major compounds:A. catechu hydrosols (benzyl alcohol (14.39%), 1-heptanol (13.84%), ethyl-2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl (13.27%)), C. nucifera hydrosol (ethyl-2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl (11.62%)); Antioxidant activity: for A. catechu hydrosols (0.093 for reducing power, 81.83% inhibition for DPPH assay and 58.60% inhibition for ABTS assay), C. nucifera hydrosols (0.122 for reducing power, 71.32% inhibition for DPPH assay and 63.57% inhibition for ABTS assay); Antibacterial activity: inhibition zone diameter of A. catechu hydrosols (11.2 mm on E. coli, 12.1 mm on C. albicans, 10.2 mm on E. coli O157:H7, 12.7 mm on S. aureus), of C. nucifera hydrosols (13.8 mm on E. coli, 14.2 mm on C. albicans, 6.8 mm on E. coli O157:H7, 12.3 mm on S. aureus). | [107] |
Lippia alba, Rosmarinus officinalis and Thymus vulgaris | Extraction procedure: SD; Chemical composition: GC–FID and GC–MS; Biological characterisation: antioxidant activity (ABTS assay), antimicrobial activity (microplate and agar dilution methods). | Major compounds: for L. alba hydrosol (carvone (92.7%)); R. officinalis hydrosol (1,8-cineole (38.2%), and camphor (51.9%)); T. vulgaris hydrosol (thymol (98.1%)); Antioxidant activity: for T. vulgaris* hydrosol (IC50 = 3038.10 μL/L); Antimicrobial activity: T. vulgaris* hydrosol showed microbicide effect on P. aeruginosa, S. aureus, C. albicans, and A. niger; | [108] |
Origanum vulgare L. | Extraction procedure: HD; Chemical composition: GC–FID and GC–MS; Biological characterisation: antimicrobial activity (optical density of cells at 600 nm). | Major compounds: carvacrol (92.5%); Antimicrobial activity: IC50 values (μg/mL) of 107 on S. aureus, 174 on M. luteus, 127 on E. coli, and 286 on P. aeruginosa | [98] |
Cinnamomum Verum | Extraction procedure: SD (commercial sample); Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (agar disc diffusion method). | Major compounds: vulgarol, emersol, cinnamic acid methyl, methyl palmitate and oleic acid (% not mentioned); Antimicrobial activity: inhibition zone diameter > 30 mm on S. aureus and S. saprophyticus. | [109] |
Daphne gnidium L. | Extraction procedure: HD; Chemical composition: GC–FID and GC–MS; Biological characterisation: antioxidant activity (FRAP and DPPH assays), antimicrobial activity (agar disc diffusion method). | Major compounds: carvone (10.9%) and carvacrol (10.9%); Antioxidant activity: for FRAP (0.42 mg AAE/mL) and DPPH (IC50 = 0.62 mg/mL); Antimicrobial activity: MIC values (μL/mL) of 31.35 on S. aureus, 62.5 on E. feacalis, 15.62 on B. cereus, 3.90 on B. subtilis, 7.81 on E. coli, 7.81 on P. aeruginosa, and 15.62 on K. pneumoniae. | [110] |
Centaurea cyanus, Citrus aurantium, Jasminum grandiflorum, Lavandua angustifólia, Matricaria chamomilla, Rosa centifólia and Rosa damascena | Extraction procedure: not mentioned (commercial sample); Chemical composition: not investigated; Biological characterisation: antioxidant activity (FRAP assay, cytotoxicity, and DNA damage level). | Antioxidant activity: hydrosols revealed the lowest antioxidant power; Impact on cell viability: hydrosols were excluded due to its weak activity and lack of standardisation during preparation. | [111] |
Rosa alba and Rosa damascena | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (total phenolic content, TBARS, DPPH and superoxide anion radicals generating system methods). | Major compounds:R. damascena hydrosols (β-citronellol (28.70%), trans-geraniol (16.44) and cis-geraniol (10.81%)), R. alba hydrosols (trans-geraniol (36.44%) and β-citronellol (28.69%)); Antioxidant activity: R. damascena hydrosols (20% TBARS inhibition at 15% concentration, approximately 40% radical scavenging effect, -OH and O−2, at 1.25% concentration and 9.37% concentration, respectively), R. alba hydrosols (22% TBARS inhibition at 15% concentration, approximately 30–38% radical scavenging effect, OH and O−2, at 6.25% concentration and 9.37% concentration, respectively). | [112] |
Eucalyptus camaldulensis | Extraction procedure: SD; Chemical composition: not investigated; Biological characterisation: antioxidant activity (DPPH and FRAP assays). | Antioxidant activity: adult leaves revealed higher activity (400, 600 and 800 μg/mL) for both methods. | [103] |
Cynoglossum cheiriforium L. | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (DPPH and β-carotene/linoleic acid assays), antifungal activity (agar disc diffusion method). | Major compounds: 2-pentyl-furan (46.3%) and carvone (23.5%); Antioxidant activity: for DPPH (IC50 = 18.2 μL/mL) and for the β-carotene/linoleic acid method (1.2 μL/mL) Antifungal activity: at concentration of 30 μL/mL an inhibition percentage of 100% was observed against A. alternata, 93.4% on P. expansum, and 89.2% on A. niger. | [86] |
Citrus sinensis, Punica granatum, Citrus maxima, Thymus vulgaris and Citrus reticulate | Extraction procedure: HD; Chemical composition: not investigated; Biological characterisation: antimicrobial activity (microdilution and agar disc diffusion methods). | Antimicrobial activity: MIC values of hydrosols against foodborne bacteria (S. aureus, Salmonella Parathyphi, and K. pneumoniae) was generally 50 mg/mL; MIC values of hydrosols against fish spoilage bacteria (V. vulnificus, P. luteola, and P. damselae) was also 50 mg/mL, with exception of thyme hydrosol that showed MIC value of 25 mg/mL on V. vulnificus. | [101] |
Phyllostachys heterocycle | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (agar well diffusion assay, antimicrobial stability assay, cell membrane integrity). | Major compounds: ionone (16.76%) and β-damascenone (10.38%); Antimicrobial activity: MIC values of ¼ concentration (v/v) on S. aureus and B. subtilis, and ½ concentration (v/v) on E. coli and S. cerevisiae; Antimicrobial stability tests: hydrosols exhibited good stability under heat treatment, change in pH, and exposure to UV radiation; Cell membrane integrity: hydrosols destroyed the cell wall and the cell membrane permeability. | [113] |
Eucalyptus camaldulensis | Extraction procedure: SD; Chemical composition: not investigated; Biological characterisation: antimicrobial activity (microtiter plate method). | Antibacterial activity: concentration of 25% of hydrosol inhibited S. pyogenes, and 100% of hydrosol inhibited E. coli, K. pneumoniae, P. aeruginosa, P. vulgaris, S. aureus, S. epidermidis, and S. mutans. | [114] |
Litsea cubeba | Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (broth dilution assay and time–kill kinetics assay). | Major compounds: geranial (32.92%) and neral (27.12%); Antimicrobial activity: MIC and MBC values (v/v) against H. pylori (10 and 30% hydrosol, respectively); MIC and MBC values (v/v) against C. albicans (10 and 40% hydrosol, respectively); Time–kill kinetics assay: H. pylori and C. albicans cells were killed after 14–18 h of treatment with 30 and 40% hydrosol, respectively. | [83] |
Canarium ovatum | Extraction procedure: HD and SD combination; Chemical composition: GC–FID and GC–MS; Biological characterisation: antibacterial activity (microdilution method). | Major compounds: α-phellandrene oxidation products including cis-α-phellandrene epoxide and a series of para-menth-5-ene-1,2-diol isomers (% not mentioned); Antibacterial activity: MIC90 values (mg/mL) of 0.26–0.45 on E. coli and 0.20–0.44 on S. aureus. | [115] |
Citrus aurantium L. | Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (total phenolic and flavonoid content, DPPH and H2O2 scavenging methods), antimicrobial activity (agar disc diffusion and broth microdilution methods). | Major compounds: linalool (16.58%); Antioxidant activity: IC50 values of 384.33 μg/mL for DPPH assay, 354.99 μg/mL for H2O2 percent scavenging; Antimicrobial activity: hydrosol did not show antimicrobial activity within the studied range of concentrations. | [11] |
Thymus sp., Myrtus communis L., Eucalyptus globulus L. and Rosmarinus officinalis L. | Extraction procedure: not mentioned (commercial samples); Chemical composition: not investigated; Biological characterisation: antioxidant activity (DPPH and ABTS assays, total phenolic and flavonoid content), antimicrobial activity (agar disc diffusion method). | Antioxidant activity: DPPH and ABTS radical scavenging activities exhibited a dose-dependent manner and increased with increasing concentrations; Antimicrobial activity: thyme* hydrosol presented an inhibition zone diameter ranging from 8–13 mm on S. aureus, E. faecalis, G. rubripertincta, E. aerogenes, Salmonella enterica, P. vulgaris, and K. pneumoniae and inhibited fungi ranging from 9–11 mm on C. albicans, C. tropicalis and C. parapsilosis. | [116] |
Laurus nobilis, Salvia officinalis and Salvia slarea | Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (DPPH and ABTS assays), antimicrobial activity (microdilution and agar disc diffusion methods). | Major compounds:L. nobilis hydrosol (1,8-cineole (65.1%) and α-thujone (11.1%)); S. officinalis hydrosol (1,8-cineole (61.4%) and camphor (22.5%)); S. sclarea hydrosol (linalool (89.5%) and α-terpineol (10.5%)); Antioxidant activity: for DPPH and ABTS assay, IC50 values (μg/mL) of 218.10 and 391.38, from L. nobilis hydrosol, respectively; of 135.58 and 551.38, from S. officinalis hydrosol, respectively; and of 200.43 and 479.27, from S. sclarea, respectively; Antimicrobial activity: hydrosols showed no activity at the studied concentrations against the bacterial strains. | [117] |
Rosmarinus officinalis and Lavandula angustifolia | Extraction procedure: SD (commercial sample); Chemical composition: GC–FID and GC–MS; Biological characterisation: antioxidant activity (DPPH and ABTS assays), cytotoxic activity (MTT test), antibacterial activity (agar disc diffusion method and vapor phase test). | Major compounds:R. officinalis hydrosol (1,8-cineole (56.2%), camphor (20.3%) and borneol (10.6%)); L. angustifolia hydrosol (linalool (42.9%), camphor (18.4%), α-terpineol (12.6%), 1,8-cineole (11.8%)); Antioxidant activity: for DPPH and ABTS, IC50 values (μg/mL) of 136.30 and 349.42 for R. officinalis hydrosol, respectively and of 240.02 and 181.24 for L. angustifolia hydrosol, respectively; Cytotoxic activity: EC50 value at 24 h of 26.82% for R. officinalis and 30.18% for L. angustifolia hydrosols on human neuroblastoma cells; Antibacterial activity: hydrosols showed no activity at the studied concentrations against the bacterial strains. | [118] |
Piper longum Linn. | Extraction procedure: solvent-free microwave extraction system; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (DPPH, ABTS and reduction power assays). | Major compounds: eugenol (25.44% and 22.82%, SFME and HD procedure), linalool (14.10% and 22.37%, SFME and HD procedure); Antioxidant activity: for DPPH (IC50 values (mg/mL) of 6.31 and 49.47 for SFME and HD hydrosols, respectively), for ABTS (IC50 values (mg/mL) of 5.53 and 12.43 for SFME and HD hydrosols, respectively) and for reducing capabilities, both hydrosols were significantly higher when compared with the control. | [20] |
Thymus vulgaris, Thymus pannonicus, Lavandula angustifolia, Lavandula x intermedia, Origanum vulgare and Origanum vulgare var. aureum | Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (DPPH and ABTS assays, total phenolic content). | Major compounds:T. vulgaris hydrosol (thymol (62.96%) and carvacrol (21.48%)); T. pannonicus hydrosol (geranial (37.91%) and β-citral (27.7%)); L. angustifolia hydrosol (linalool (22.47%), eucalyptol (20.8%), and camphor (16.94%)); Lavandula x intermedia hydrosol (linalool (29.83%), eucalyptol (24.38%), endo-borneol (13.65%), and terpinen-4-ol (10.45%)); O. vulgare hydrosol (1-octen-3-ol (13.31%) and linalool (11.59%)); O. vulgare var. aureum hydrosol (linalool (54.09%), and thymol (21.96%)); Antioxidant activity: the hydrosol inhibition results ranged from 4.89 to 16.97% for DPPH assay, and from 10.11 to 98.16% for ABTS assay. T. vulgaris hydrosol presented the highest inhibition for both methods. | [119] |
Dracocephalum moldavica | Extraction procedure: SD; Chemical composition: GC–FID; Biological characterisation: antioxidant activity (DPPH, ABTS, superoxide anion, β-carotene bleaching and reducing power assays), antimicrobial activity (agar disc diffusion method). | Major compounds: geranial (23.4%), neral (22.4%), and geraniol (21.3%); Antioxidant activity: for DPPH (8.82 μmol/100 mL), for ABTS (25.44 μmol/100 mL), for superoxide oxide (19.58 μmol/100 mL), for β-carotene bleaching (41.63 μmol/100 mL), and for reducing power (9.50 μmol/100 mL); Antimicrobial activity: inhibition zone diameters of 11.0 mm on B. cereus, 28.3 mm on S. aureus, 27.0 mm on L. monocytogenes, 34.3 mm on E. coli, and 10.3 mm on Salmonella. | [104] |
Origanum vulgare var. hirtum and Coridothymis capitatus | Extraction procedure: not mentioned (commercial samples); Chemical composition: methodology not mentioned; Biological characterisation: antimicrobial activity (broth microdilution technique and time–kill kinetics assay). | Major compounds: O. vulgare hydrosol (thymol (100%)); C. capitatus hydrosol (carvacrol (100%)); Antimicrobial activity: both hydrosols’ MIC values ranged from 125 to 500 μL/mL on different L. monocytogenes strains; the time–kill kinetics assay showed that hydrosols significantly decreased the viable cell numbers of L. monocytogenes in a time-dependent and strain-dependent manner (in 60 min exposure, both hydrosols reduced the cellular load of each tested strain by about 1.2–1.7 log CFU/mL). | [120] |
Cupressus leylandii, Eucalyptus globulus, Aloysia citrodora and Melissa officinalis | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (viable cell counting method). | Major compounds: C. leylandii hydrosol (terpinene-4-ol (36.20%) and oplopanonyl acetate (12.76%)); E. globulus hydrosol (1,8-cineole (90.12%)); A. citrodora hydrosol (neral (39.01%) and geranial (38.91%)); M. officinalis hydrosol (neral (42.03%) and geranial (50.08%)); Antimicrobial activity: the results show that hydrosols antimicrobial potential increased with concentration. The most promising ones were A. citrodora > M. officinalis > E. globulus > C. leylandii. At 20% (v/v) concentration A. citrodora hydrosol inhibited 90% of E. coli and 80% of C. albicans growth. Additionally, M. officinalis* hydrosol significantly reduced growth by 70.0% for S. aureus and 79.6% for C. albicans, while E. globulus* hydrosol reduced C. albicans growth by 71.3%. | [5] |
4.1.2. Hydrosols as Natural Sanitisers
4.1.3. Hydrosols as Food Enrichments
4.1.4. Enzymatic Browning Prevention by Hydrosols
Plant Scientific Name | Extraction and Characterisation Methodologies | Main Results | Reference |
---|---|---|---|
Salvia officinalis, Rosmarinus officinalis, Origanum onites and Thymus vulgaris | Application: decontamination from fresh-cut parsley; Extraction procedure: HD; Chemical composition: not investigated; Biological characterisation: antimicrobial activity (decontamination assay). | Antimicrobial activity: after 60 min of treatment thyme, oregano, sage, and rosemary hydrosols caused 60.28%, 42.06%, 27.57% and 16.36% growth inhibition of E. coli O157:H7, respectively. While thyme and oregano hydrosols completely inhibited S. aureus growth, followed by 14.50% and 12.77% of inhibition from sage and rosemary hydrosols, respectively. | [145] |
Thymus vulgaris, Satureja hortensis, Rosmarinus officinalis, Salvia officinalis, Sideritis canariensis, Origanum onites and Laurus nobilis | Application: decontamination of iceberg lettuce; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antibacterial activity (decontamination assay). | Major compounds: rosemary hydrosol (1,8-cineole (49.90%)); bay leaf hydrosol (α-terpineol acetate (23.63%), 1,8-cineole (10.03%)); oregano hydrosol (thymol (51.18%), carvacrol (44.10%)); salvia hydrosol (o-cymene (10.26%)); summer savoury hydrosol (thymol (29.81%), carvacrol (19.12%), o-cymene (14.25%)); sideritis hydrosol (1,8-cineole (25.09%)), thyme (thymol (56.96%), o-cymene (13.45%)); Antibacterial activity: all studied hydrosols showed favourable results with a 3-log reduction in the pathogen number (of E. coli O157:H7, L. monocytogenes and Salmonella). | [130] |
Thymbra capitata | Application: decontamination of surfaces as a natural sanitiser; Extraction procedure: not mentioned; Chemical composition: SPME + GC–MS; Biological characterisation: antibacterial activity (decontamination assay). | Major compounds: carvacrol (946.3 mg/L), 1-octen-3-ol (10.8 mg/L); Antibacterial activity: an approximated 5-log reduction of planktonic and biofilm of Salmonella enterica cells was obtained by applying 42% and 75% hydrosol solutions, respectively. | [128] |
Monarda citrodora, Monarda dydima, Monarda fistulosa, Grindela robusta, Origanum heracloticum, Satureja montana, Citrus aurantium, Cyanis segetum, Hamamelis virginiana, Melissa officinalis, Coridothymus capitatus, Mentha rotundifólia, Origanum vulgare, Rosmarinus officinalis and Salvia officinalis | Application: safe cleaning of paper artwork; Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antifungal activity (broth microdilution assay). | Major compounds: C. aurantium hydrosol (linalool (47.70%), terpinolene (24.82%), α-terpineol (13.83%)), M. fistulosa hydrosol (carvacrol (49.68%), thymol (45.23%)); Antifungal activity: M. didyma*, M. fistulosa*, C. capitatus*, H.virginiana*, C. segetum*, C. aurantium subsp. Amara*, M. citrodora* hydrosols had fungicidal action (on A. sydowi, C. spherospermum and P. chrysogenum) at least at a dilution of 1:2. | [146] |
Mentha piperita | Application: decontamination of shredded carrots; Extraction procedure: HD; Chemical composition: not investigated; Biological characterisation: antioxidant activity (ABTS assay, total phenolic content), antimicrobial activity (broth microdilution assay). | Antioxidant activity: IC50 value of 9.41 μL for mint hydrosol for ABTS assay; Antimicrobial activity: the washing treatments resulted in a significant decrease of the microbial growth of E. coli and L. monocytogenes (with a 0.57 10-log reduction). | [129] |
Origanum majorana | Application: decontamination of shredded carrots; Extraction procedure: HD; Chemical composition: not investigated; Biological characterisation: antioxidant activity (DPPH and ABTS assays), antimicrobial activity (total viable count method). | General results: the combination of ascorbic acid with marjoram hydrosol increased carotenoid content and total soluble solids. The total viable counts of fungi were decreased by single or combined treatment (decreasing by 49.1% of fungi at the 9th day compared with the control) during storage. | [147] |
Citrus lemon L. and Mentha spicata L. | Application: decontamination of salad vegetables; Extraction procedure: HD system; Chemical composition: not investigated; Biological characterisation: antimicrobial activity (plate count method). | Antimicrobial activity:C. lemon hydrosol decreased 7.38 log CFU/g in total microbial counts, and 7.35 log CFU/g on E. coli counts. M. spicata hydrosol reduced 6.99 log CFU/g in total microbial counts and showed no antimicrobial effect on E. coli. | [148] |
Coridothymus capitatus, Origanum hirtum, Rosmarinus officinalis, Salvia officinalis and Citrus aurantium | Application: decontamination of food-contact surfaces (polystyrene and stainless steel); Extraction procedure: not mentioned (commercial samples); Chemical composition: not investigated; Biological characterisation: antimicrobial activity (broth microdilution method), antibiofilm activity. | Antimicrobial activity: MIC value of 125 μL/L on L. monocytogenes from C. aurantium* hydrosol; Biofilm formation inhibition: sub-MIC concentrations of C. aurantium* hydrosol (62.5 μL/L) inhibited biofilm formation in a value range of 20.6–38.2% (showing a low-to-moderate efficacy). | [149] |
Citrus limon, Thymus serpyllum and Thymus vulgaris | Application: antiviral properties for reducing foodborne viral diseases; Extraction procedure: not mentioned (commercial samples); Chemical composition: SPME + GC–MS; Biological characterisation: cytotoxicity determination and virucidal effect. | Major compounds: C. limon hydrosol (limonene (53.45%), β-pinene (20.60%) and γ-terpinene (14.03%)), T. serpyllum hydrosol (thymol (84.01%)), T. vulgaris hydrosol (carvacrol (58.67%), linalool (17.11%), cymene (11.23%)); Virucidal effect: T. vulgaris and T. serpyllum hydrosols showed greater virucidal activity against MNV-1, by reducing in 2 log after treatment, C. limon reduced 1 log, both immediately and after 24 h of treatment. | [150] |
Plant Scientific Name | Extraction and Characterisation Methodologies | Main Results | Reference |
---|---|---|---|
Cymbopogon citratus and Murraya koenigii | Application: as natural flavouring in herbal ice cream; Extraction procedure: SD; Chemical composition: not investigated; Biological characterisation: citral content, nutritional composition, and sensory analysis. | General results: C. citratus hydrosol was identified as a good source of citral content. Regarding ice cream nutritional composition, protein and carbohydrate levels were similar for ice creams made with both hydrosols. However, ice cream made with M. koenigii hydrosol had higher fat and total solids content. Both ice creams received high sensory scores (colour and appearance, flavour, body and texture, and melting quality), with the C. citratus formulation being the most promising due to bioactive citral compounds offering health benefits. | [151] |
Rosa damascena Mill. | Application: development of alginate beads with rose hydrosol for future food applications; Extraction procedure: not mentioned (commercial sample); Chemical composition: GC–MS; Biological characterisation: antioxidant activity (total phenolic and flavonoid content, DPPH, ABTS and CUPRAC assays). | Major compounds: phenethyl alcohol (65.34%), 3,7-dimethyl-1,7-octanediol (13.25%) and α-terpineol (10.20%); Antioxidant activity: 15% inhibition by DPPH assay, 33% inhibition by ABTS assay, and the highest antioxidant power of 270 μM/mL by CUPRAC assay. | [152] |
Cymbopogon citratus | Application: incorporation into beverages; Extraction procedure: HD; Chemical composition: HS-SPME/GC–MS; Biological characterisation: microbial analyses of Matcha tea beverages (method adopted by Uprel, Lda, Portugal, counting total mesophiles). | Major compounds: geranial (213.79 mg/g) and neral (135.00 mg/g); Microbial analyses of Matcha tea beverages: the incorporation of hydrosols inhibited the proliferation of fungi after 79 days of storage, displaying an antifungal activity. Incorporation as a food ingredient resulted in great acceptance for the readily prepared beverage from a consumer perspective. Percentages higher than 40% (v/v) were negatively rated due to strong citrus flavour. | [153] |
Plant Scientific Name | Extraction and Characterisation Methodologies | Main Results | Reference |
---|---|---|---|
Citrus medica, Citrus lemon and Citrus sinensis | Application: hydrosols as anti-browning agents for commercial mushrooms; Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: tyrosinase inhibition activity, determination of quinone inhibition. | Major compounds: citron hydrosol (α-terpineol (16.81%), geraniol (15.35%) and citral (17.4%)), lemon hydrosol (α-terpineol (29.98%), geraniol (48.27%), and citral (28.84%)), and orange hydrosol (terpinolene (12.41%)); Tyrosinase inhibition: IC50 values of 5.9 μg for orange hydrosol, of 18.04 μg for citron hydrosol, and 38.57 μg for lemon hydrosol; Quinone inhibition: citrus hydrosols showed no inhibitory effect on quinone production. | [143] |
Cymbopogon nardus and Rosa sp. | Application: hydrosols effect on enzymatic-browning of fresh-cut taro; Extraction procedure: SD; Chemical composition: GC–FID and GC–MS; Biological characterisation: colour measurement (browning index), total phenolic content, enzyme inhibition assay (PAL, POD, and PPO). | Major compounds: rosa hydrosol (2,3-dehydro-1,8-cineole (23.84%), 3-carene (21.26%), and 2-one-6-methyl-5-hepten (16.28%)), citronella hydrosol (citronellol (20.49%)); Browning index: treating fresh-cut taros with 100 and 500 mL/L with each hydrosol significantly reduced the browning index during 12 days of cold storage, compared with the control, as evidenced by colour measurements and visual inspection; Enzymes inhibition: rose and citronella hydrosols significantly reduced PAL, POD, and PPO, showing promise as an inhibitor for the enzymatic browning for foods. | [144] |
Origanum bilgeri, Origanum minutiflorum, Origanum vogelli, Origanum majorana, Origanum onites, Origanum syriaucm and Origanum vulgare | Application: hydrosols as natural preservatives on PPO activity in fresh-cut mushroom; Extraction procedure: HD; Chemical composition: not investigated; Biological characterisation: enzyme inhibition assay (PPO). | Enzyme inhibition: O. bilgeri hydrosol provided 62.26% reduction of enzyme activity at the end of the 3rd storage day. Hydrosols administrations were found to be statistically significant when compared with control (p < 0.01) (enzyme inhibition on 1st storage day: O. majorana, O. minutiflorum and O. vogelii; on 3rd storage day: O. bilgeri, O. syriacum and O. vogelli). | [154] |
4.2. Agricultural Applications
Plant Scientific Name | Extraction and Characterisation Methodologies | Main Results | Reference |
---|---|---|---|
Origanum majorana, Mentha pulegium and Melissa officinalis | Extraction procedure: HD and microwave-assisted HD; Chemical composition: GC–FID and GC–MS; Biological characterisation: insecticidal and inhibition potential (on Myzus persicae). | Major compounds:O. majorana hydrosol (carvacrol (78.0%) and terpinen-4-ol (11.3%)), M. pulegium hydrosol (piperitone (97.9%)), and M. officinalis hydrosol (carvacrol (35.0%), neral (17.2%), and geranial (12.7%)); Insecticidal activity: M. officinalis and M. pulegium hydrosols had the strongest inhibitory effect, O. majorana hydrosol caused 10–15% aphid mortality after 24 h. | [156] |
Mentha pulegium and Mentha suaveolens | Extraction procedure: SD; Chemical composition: GC–FID and GC–MS; Biological characterisation: insecticidal activity (on Toxoptera aurantia). | Major compounds: M. suaveolens hydrosol (piperitenone oxide (69.32%)), and M. pulegium hydrosol (carvacrol (39.37%), and piperitenone (10.05%)); Insecticidal activity: the mortality of black aphids treated by M. suaveolens and M. pulegium hydrosols reached 100% with 1 mL of concentration (LC50 = 0.01 mL), and 99% with 2 mL of concentration (LC50 = 0.5 mL), respectively. | [170] |
Daucus carota subsp. Sativus | Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antifungal activity (agar disc diffusion method), conservation assay (protective and preventive activity). | Major compounds: myristicine (17.8%), (E)-methyl-iso-eugenol (16.6%), and methyl eugenol (11.9%); Antifungal activity: with 0.1 mL/L concentration, the hydrosol showed inhibitory effects of 89.9% on P. expansum and 86.5% on B. cinerea. | [171] |
Artemisia absinthium | Extraction procedure: SD; Chemical composition: HPLC–MS; Biological characterisation: nematocidal activity (effect on juveniles, effect on egg hatching, effect on juvenile infection capacity). | Major compounds: (5Z)-2,6-dimethylocta-5,7-diene-2,3diol (31.2%); Nematocidal activity: hydrosol showed strong nematocidal effects on M. javanica, suppressing nematode egg hatching (>95%) after 5 days. In-vivo tests showed a reduction in the root penetration rate on tomato. | [172] |
Ocimum basilicum and Ruta chalepensis | Extraction procedure: HD; Chemical composition: GC–FID and GC–MS; Biological characterisation: insecticidal activity (on Aphis gossypii and Tetranychus urticae). | Major compounds:O. basilicum hydrosol (linalool (66.5%) and eugenol (18.9%)), R. chalepensis hydrosol (2-nonanone (77.0%)); Insecticidal activity: O. basilicum hydrosol (46% and 64% of mortality rate on A. gossypii and T. urticae, respectively), R. chalepensis hydrosol (50% and 56% of mortality rate on A. gossypii and T. urticae, respectively). | [22] |
Marrubium vulgare | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antifungal activity (radial growth technique), in-vivo antifungal assay (on P. expansum). | Major compounds: methyl eugenol (65.5%) and a α-bisabolol (12.5%); Antifungal activity: hydrosol showed percentages of inhibition of 85.6% for B. cinerea, 77.3% for A. alternata and 89.8% for P. expansum; In-vivo antifungal assay: 0.15 mL/L of hydrosol showed preventive and protective effects of 100% up to 20 days, and 80% up to the 25th day. | [173] |
Thymus citriodorus | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: nematocidal activity (on Meloidogyne incognita and Meloidogyne javanica). | Major compounds: geraniol (44.06%); Nematocidal activity: EC50 values of 38.95 and 7.46% (v/v), for 1 and 2 days, respectively, for M. incognita. EC50 value of 4.35% (v/v) at the 2nd day for M. javanica. | [159] |
Satureja hellenica | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: nematocidal activity (on Meloidogyne incognita and Meloidogyne javanica). | Major compounds: carvacrol (50.1%) and borneol (20.4%); Nematocidal activity: with dilution of 0.5 v/v, for both species, the percentage of dead second stage juveniles was more than 70% after 48 h, and more than 90% after 96 h immersion. No significant difference was observed for egg differentiation or for hatching inhibition using the hydrosol. | [161] |
Lavandula officinalis, Rosmarinus officinalis and Salvia officinalis | Extraction procedure: SD; Chemical composition: not investigated; Biological characterisation: antioxidant activity (total phenolic and flavonoid content, TEAC and DPPH assays), antimicrobial activity (agar disc diffusion method). | Antioxidant activity: rosemary* and sage* hydrosols showed the strongest antioxidant potential for both assays; Antimicrobial activity: rosemary* hydrosol exerted activity on S. aureus. | [174] |
Lavandula x intermedia Emeric ex Loisel | Extraction procedure: HD; Chemical composition: GC–MS and UHPLC–DAD–ESI–HR–MS, NMR spectroscopy; Biological characterisation: repellence activity (on Tribolium confusum), allelopathic activity. | Major compounds: flower hydrosol (linalool (43.8%), 1,8-cineole (25.4%) and camphor (12.8%)), stem hydrosol (linalool (34.4%), 1,8-cineole (28.9%) and camphor (15.4%)); Insect repellence bioassay: RD50 values of 3.58 and 3.26 μg/cm2 for flower and stem hydrosols, respectively; Allelopathic activity: seed germination was completely inhibited by flower hydrosols, while the stem hydrosols reduced the germination percentage by 24%. | [16] |
Cuminum cyminum | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: nematocidal activity (on Meloidogyne incognita and Meloidogyne javanica). | Major compounds: γ-terpinen-7-al (42.9%), cumin aldehyde (31.5%) and α-terpinen-7-al (20.9%); Nematocidal activity: for both nematode species, an increase in the paralyzed second stage juvenile was observed with the increase in hydrosol concentration (5 to 50%) or exposure time. After immersion in a 50% hydrosol dilution, there was a noticeable decrease in egg differentiation. | [160] |
Origanum vulgare, Thymus vulgaris, Citrus lemon and Citrus sinensis | Extraction procedure: SD; Chemical composition: not investigated; Biological characterisation: antifungal activity (agar dilution method), in-vivo antifungal assay (against Botrytis cinerea—grey mould). | Antifungal activity: IC50 values for growth inhibition 2.5% (v/v) of O. vulgare hydrosol, 2.1% (v/v) of T. vulgaris hydrosol, 0.7% (v/v) of C. sinensis hydrosol, and 7.6% (v/v) of C. limon hydrosol; In-vivo antifungal assay: hydrosols alone reduced the disease incidence percentage and disease severity index by 25% and 30%, respectively. While combinations of hydrosols and essential oils induced reductions of 70% and 76%, respectively. | [175] |
Salvia fruticose, Ocimum basilicum, Dracocephalum moldavica, Mentha spicata, Salvia officinalis, Melissa officinalis, Origannum onites and Thymus kotschyanus | Extraction procedure: HD; Chemical composition: not investigated; Biological characterisation: allelopathy activity (on Amaranthus retroflexus) | Germination inhibition: considering the pure form of hydrosol (100%) there was a reduction in germination with M. spicata*, M. officinalis* and T. kotschyanus* hydrosols. | [176] |
Satureja montana and Citrus aurantium var. amara | Extraction procedure: not mentioned (commercial sample); Chemical composition: provided by the producers; Biological characterisation: antimicrobial activity (micro and microdilution assays), disease incidence experiments. | Major compounds:S. montana hydrosol (carvacrol (87.79%) and thymol (13.88%)); C. aurantium hydrosol (linalool (47.70%), terpinolene (24.82%), α-terpineol (13.83%)); Antimicrobial activity: MIC values (% v/v) for S. montana hydrosol (25 on E. amylovora, 50 on P. savastanoi, 25 on X. vesocatoria, and 12.5 on A. vitis); for C. aurantium hydrosol (6.25 on E. amylovora, 1.6 on P. savastanoi, 3.1 on X. vesocatoria, and 0.8 on A. vitis); Disease incidence experiments: 4.5% v/v showed resistance reduction in 50% protection. | [177] |
Salvia officinalis, Rosmarinus officinalis and Lavandula angustifolia | Extraction procedure: SD; Chemical composition: GC–MS and HPLC–DAD; Biological characterisation: antioxidant activity (total phenolic and flavonoid content, TEAC, CUPRAC, DPPH, superoxide anion scavenging and metal chelating assays), inhibition of acetylcholinesterase activity. | Major compounds: sage hydrosol (camphor (81.57%) and thujone (15.02%)); rosemary hydrosol (camphor (37.52%), verbenone (34.80%), and 1,8-cineole (15.42%)); lavender hydrosol (linalool (29.03%), coumarin (15.47%) and α-terpineol (14.21%)); Antioxidant activity: sage* hydrosol exhibited the highest activity (2.09 μM/g for TEAC, 4.33 μM/g for CUPRAC, 264.14 μg/mL for IC50 DPPH, 622.12 μg/mL for IC50 superoxide, 502.10 μg/mL for IC50 metal chelating); Inhibition of enzyme activity: sage* and rosemary* hydrosols inhibited the enzyme activity. | [178] |
Monarda didyma | Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: fumigant toxicity assay (on Drosophila suzukii), contact toxicity assay, survival assay, food intake assay, egg-laying assay. | Major compounds: carvacrol (59%) and thymol (38%); Toxicity assays: fumigant assay showed that hydrosols do not cause mortality at the tested concentrations. For the contact assay, hydrosol showed a LC50 of 5.03 μL/mL after 48 h; Food intake assay: hydrosol resulted in a significant decrease in total food intake; Egg-laying assay: hydrosol caused a significant reduction in the number off egg laid in two different oviposition assays. | [179] |
4.3. Pharmaceutical Applications
4.4. Medicinal Applications
4.5. Cosmetic Applications
Plant Scientific Name | Extraction and Characterisation Methodologies | Main Results | Reference |
---|---|---|---|
Monarda citriodora | Application: various uses as antimicrobial agent against pathogens involved in human infections; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (broth microdilution test). | Major compounds: thymol (66.4%) and carvacrol (28.6%); Antimicrobial activity: MIC values (% v/v) of 12.5–25% on E. faecalis, 25% on E. faecium, 12.5–25% on E. coli, 25% on S. pyogenes, 25% on K. pneumoniae, 12.5–25% on S. aureus, 50% on P. aeruginosa, 25% on C. albicans, 12.5% on C. glabrata, 12.5% on C. parapsilosis, 50% on C. tropicalis, 12.5% on M. caribicca, 12.5% on S. cerevisiae, 50% on A. sydowii, 50% on C. cladosporioides, 50% on P. chrysogenum, and 25% on S. chartarum. | [199] |
Oliveria decumbens | Application: emulsion formulation to prevent oxidative stress and related diseases; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (ABTS, DPPH, H2O2 scavenging, hydroxyl radical scavenging, superoxide radical scavenging, nitric oxide scavenging, nitrite scavenging, linoleic acid oxidation inhibition, low density LDL oxidation inhibition, and TBARS assays). | Major compounds: carvacrol (52.94%) and thymol (37.63%); Antioxidant activity: IC50 values (μg/mL) of emulsions of EO + hydrosol at a concentration range of 20–200 μg/mL: 28 for ABTS, 44 for DPPH, 226 for H2O2, 92 for hydroxyl radical, 104 for superoxide ion, 116 for nitric oxide, 75 for nitrite, 192 for linoleic acid oxide, 130 for LDL, and 122 for TBARS. | [200] |
Coridothymus capitatus (L.) Reichenb. Fil. | Application: combination therapy between natural compounds and drugs for improving antimicrobial action and reducing side effects; Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (broth microdilution method). | Major compounds: carvacrol (93.11%); Antibacterial activity: the order of susceptibility to hydrosol (MIC values ranged from 12.5 to 50% v/v) was B. subtilis = S. aureus ATCC > S. aureus MRSA = S. epidermidis = L. monocytogenes > P. aeruginosa strains; Antifungal activity: the order of susceptibility to hydrosol (MIC values ranged from 6.25 to 50% v/v) was C. glabrata > C. albicans = C. guilliermondii = C. parapsilosis > C. krusei = C. tropicalis > C. norvegensis = C. lusitaniae = C. valida strains. | [24] |
Veronica saturejoides Vis. Ssp. saturejoides | Application: various uses as antioxidant agent in pharmacy technology; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (total phenolic and flavonoid content, DPPH and ORAC assays). | Major compounds: Prenj hydrosols (trans-p-mentha-1(7),8-dien-2-ol (31.75%), (E)-caryophyllene (24.52%) and methyl eugenol (13.35%)) and Kamenisca hydrosols (trans-p-mentha-1(7),8-dien-2-ol (36.63%), (E)-caryophyllene (12.25%), allo-aromadendrene (11.53%) and methyl eugenol (11.92%)); Antioxidant activity: for DPPH assay (0.225 μmol/mL (34.84% inhibition) and 0.323 μmol/mL (49.26% inhibition), for Prenj and Kamenisca hydrosols, respectively), for ORAC assay (0.559 and 0.679 μmol/mL, for Prenj and Kamenisca hydrosols, respectively). | [180] |
Lavandula x intermedia | Application: evaluation of the therapeutic benefits of antimicrobial nano-emulsion formulation; Extraction procedure: not mentioned (commercial sample); Chemical composition: GC–MS; Biological characterisation: antibacterial activity (microdilution method) | Major compounds: pure hydrosol (1,8-cineole (52.9%), camphor (19.6%) and linalool (12.6%)), hydrosol in nano-emulsion (1,8-cineole (18.6%), camphor (32.9%) and linalool (20.6%)); Antibacterial activity: MIC values (% v/v) of 0.75 on E. coli and 0.06 on B. cereus for nano-emulsion hydrosol. | [201] |
Lavandula angustifolia, Lavandula intermedia, Origanum hirtum, Satureja montana, Monarda dydima and Monarda fistulosa | Application: topical application for healing skin infections; Extraction procedure: not mentioned (commercial sample); Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (broth microdilution test) on S. aureus MRSA, S. aureus MSSA, S. pyogenes, E. faecalis, E. faecalis VRE, Enterococcus faecium, C. albicans, C.parapsilosis, C. glabrata, C. tropicalis; T. soudanense, T. tonsurans, T. rubrum, T. violaceum and M. canis. | Major compounds:L. angustifolia hydrosol (β-linalool (42.15%), terpinen-4-ol (20.23%) and α-terpineol (19.01%)), L. intermedia hydrosol (β-linalool (34.17%), camphor (22.12%), and 1,8-cineole (19.08%)), O. hirtum hydrosol (thymol (100%)), S. montana hydrosol (carvacrol (85.79%) and thymol (13.88%)), M. didyma hydrosol (carvacrol (48.44%) and thymol (34.03%)), and M. fistulosa hydrosol (carvacrol (84.68%)); Antimicrobial activity: O. hirtum and M. didyma hydrosols were more active than the others against bacteria, yeast and dermatophytes. A proportion of 50% (v/v) of O. hirtum hydrosol was able to inhibit all bacteria growth. A proportion of 50% (v/v) of S. montana, O. hirtum and M. didyma hydrosols had an inhibitory and cytocidal effect against most dermatophytes, 25% (v/v) of M. fistulosa hydrosol was able to inhibit all strains. | [15] |
Melaleuca alternifolia | Application: natural antimicrobial agent in health care products; Extraction procedure: SD (commercial sample); Chemical composition: GC–FID and GC–MS; Biological characterisation: antibacterial activity (agar disc diffusion method). | Major compounds: terpinen-4-ol (624.2 ug/mL) and 2-endo-hydroxy-1,4-cineole (112.8 μg/mL); Antibacterial activity: inhibition zones diameter ranging from 14.3 to 34.6 mm, where B. subtilis, C. albicans and M. luteus were very sensitive. | [202] |
Hypericum perforatum L. ssp. Veronese (Schrank) H. Lindb | Application: natural antidepressant as a source of volatiles with antiproliferative, antioxidant and antiphytoviral activities; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (ORAC and DPPH assays), cytotoxicity assay (on cancer cells), antiphytoviral activity (on N. tabacum L. cv. Samsun). | Major compounds: myrtenol (12.33%); Antioxidant activity: 240.34 μmol/L for ORAC assay, 11.88% for DPPH inhibition; Cytotoxic effect: good activity on all three cancer lines with IC50 values of 8.3% on Hela, 8.81% on HCT116 and 7.05% on U2OS; Antiphytoviral activity: compared with the control on the 3rd, 5th and 7th days post inoculation, the percentages of inhibition of local lesions on hydrosol-treated plants were 50.37, 36.19, and 39.87%, respectively. | [203] |
Cistus ladanifer, Helichrysum italicum, Thymbra capitata and Ocimum basilicum | Application: evaluate the potential of hydrosols as pharmaceutical ingredients; Extraction procedure: C. ladanifer and H. italicum (SD—commercial sample) and T. capitata and O. basilicum (HD); Chemical composition: GC–MS; Biological characterisation: acute toxicity test (on Daphnia magna). | Major compounds: C. ladanifer hydrosol (4-hydroxy-3-methylacetophenone (21.6%), myrtenol (11.2%) and p-cymen-8-ol (10.7%)), H. italicum hydrosol (α-terpineol (30.5%), carvacrol (29.6%) and 1,8-cineole (15.4%)), and T. capitata hydrosol (carvacrol (98.1%)), O. basilicum hydrosol (4-hydroxy-3-methylacetophenone (52.5%) and linalool (38.3%)); Acute toxicity assay: none of the tested hydrosols caused observable acute effects on D. magna after 48 h of exposure up to the highest concentrations tested (C. ladanifer and H. italicum hydrosols = 2000 mg/L, O. basilicum hydrosol = 8000 mg/L, T. capitata hydrosol = 400 mg/L). | [204] |
Thymus x citriodorus (Pers.) Schreb. | Application: evaluation of the potential of hydrosols as active pharmaceutical ingredients for skin applications validating its anti-acne activity (controlling acne related bacteria, modulate inflammation and oxidation); Extraction procedure: SD (commercial sample); Chemical composition: GC–FID; Biological characterisation: antimicrobial activity (microdilution method), anti-biofilm activity, anti-inflammatory activity (nitric oxide production), antioxidant activity (DPPH assay), acute toxicity test (on Daphnia magna). | Major compounds: 1,8-cineole (26.3%), linalool (24.3%) and geraniol (13.9%); Antimicrobial activity: MIC value of 50% (v/v) on C. acnes; Anti-biofilm activity: a significant reduction of biofilm adhesion (approximately 70%) was present at the MIC value. Hydrosol was also able to impair preformed biofilms with disruptions ranging from 40 to 55% at half MIC and MIC value; Anti-inflammatory activity: hydrosol was able to inhibit nitric oxide production in a dose-dependent manner (reducing it by 1.56–6.25%); Antioxidant activity: IC50 values of 20.08%; Acute toxicity test: hydrosol caused no observable effects after 48 h of exposure (at highest concentration 2000 mg/L). | [205] |
Salvia rosmarinus Spenn. Syn. Rosmarinus officinalis L., Salvia officinalis L., Cupressus sempervirens L. | Application: evaluate the hydrosols phytochemicals with pharmacological potential formulations; Extraction procedure: HD (commercial sample); Chemical composition: HS-SPME, GC–MS and UHPLC–HR-MS, NMR spectroscopy; Biological characterisation: allelopathy test, brine shrimp lethality test (on Artemia salina), cytotoxicity assay (MTT cell viability), antifungal activity, antioxidant activity (inhibition of horseradish peroxidase) | Major compounds: rosemary hydrosols (1,8-cineole (47.1%)); sage hydrosol (1,8-cineole (42.9%), α-thujone (24.3%), and β-thujone (14.7%)); cypress hydrosol (terpinen-4-ol (44.5%), and α-terpinyl acetate (10.6%)); Toxicological impact: rosemary* hydrosol showed higher toxicity than sage and cypress, inhibiting the germination of the Canasta variety, and the highest potential (mean mortality 95%) on A. salina; Cytotoxic effects: rosemary* hydrosol appears to be the best recommendation at the neuronal level, being at the same time non-toxic (5–50 μL/mL) to hypothalamic cells and protective against hydrogen peroxide-induced toxicity; Antifungal activity: rosemary* and sage* hydrosols displayed the best antimycotic profile with MIC values in the range of 7.81–6.25 μL/mL; Antioxidant activity: for cypress hydrosol (25.94% inhibition), rosemary hydrosol (19.53% inhibition), and sage hydrosol (31.58% inhibition). | [206] |
Rubus idaeus | Application: evaluate the potential of hydrosols as active pharmaceutical ingredients; Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (DPPH, ABTS and FRAP assays), antibacterial activity (agar diffusion method), cytotoxicity assay (MTT assay). | Major compounds: 1,8-cineole (50.8%), 3-carene (16.3%), and 2-heptanol (10.3%); regarding hexanoic hydrosol extract, all the compounds were lower than 10%; Antioxidant activity: for DPPH assay (6746 μM/100 mL), for ABTS assay (13.57 μM/100 mL), and for FRAP assay (307.48 μM/100 mL); Antibacterial activity: inhibition zone diameters of 7.67 mm on B. cereus, and 12 mm on A. bohemicus; Cytotoxic effect: selective cytotoxicity towards cancer cells with dose dependency. In contrast, the healthy cells tested showed increased proliferation when treated with the hydrosol. | [189] |
Rosa damascena, Rosa alba, Rosa centifolia and Rosa gallica | Application: evaluate the potential of hydrosols as antioxidants and anti-herpesvirus nutraceuticals; Extraction procedure: SD; Chemical composition: not investigated; Biological characterisation: antioxidant activity (DPPH, ABTS and superoxide (O2-) inhibition assays), antibacterial activity (broth microdilution method), dehydrogenase activity (MTT test); cytotoxicity assay, and antiviral activity. | Results: all studied hydrosols exerted significant antioxidant activity and good anti-herpes simplex virus type-1 activity while maintaining a good toxicological safety profile toward normal cell lines. Hydrosols had a weak antiproliferative effect on S. aureus and showed no activity on Gram-negative bacterial and fungal. | [207] |
Cinnamomum osmophloeum | Application: prospects for development of an additive or ingredient for natural remedy for erectile dysfunction; Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: PDE5, ACE, AChE, and ARG2 inhibition assays. | Major compounds: trans-Cinnamaldehyde (65.03%); Inhibition assay: C. osmophloeum hydrosol showed therapeutic potential due to its bioactive compounds. It affects erectile dysfunction by inhibiting several enzyme activities, suggesting its potential to influence erectile function through multiple physiological pathways. | [208] |
Helichrysum italicum | Application: natural extract to support skin regeneration; Extraction procedure: SD; Chemical composition: not investigated; Biological characterisation: scratch assay, immunostaining, and gene expression analysis. | General results: The study confirmed the regenerative properties of H. italicum hydrosol, showing a higher collagen deposition in cells treated with hydrosol concentrations of 20 and 30% compared with untreated cells, promoting the use of natural alternatives as a safe skin treatment for wounds. | [209] |
Plant Scientific Name | Extraction and Characterisation Methodologies | Main Results | Reference |
---|---|---|---|
Salvia officinalis, Thymus vulgaris and Mentha x piperita | Application: hydrosol oral rinse combined with basic oral care; Extraction procedure: not mentioned (sample obtained from EO producing company); Chemical composition: GC; Biological characterisation: prevention of chemotherapy-induced oral mucositis. | Major compounds: 2-hexanone, eucalyptol, menthone, camphor, pulegone, menthol, α-terpineol, piperitenone, thymol and carvacrol (% not mentioned); Oral mucositis inhibition: the incidence of oral mucositis was significantly lower with the intervention with hydrosol group compared with the control group on day 5 due to its antimicrobial and antifungal properties. | [185] |
Rosa damascena Mill. | Application: hydrosols on lens enzyme activities in cataract development, haematology, and clinical biochemistry parameters in diabetic induction; Extraction procedure: not mentioned (sample obtained from a local distillery); Chemical composition: GC; Biological characterisation: haematology, clinical biochemistry, lens enzymatic activity. | Major compounds: citronellol (19.20%), geraniol (13.20%), and 2-phenylethanol (35.98%); Results: hematologic, hepatic and renal functions were all improved when 1515 mg/L rose hydrosol was consumed. Hyperglycaemia was also reduced, as was the production of advanced glycation end products. Rose hydrosols had the potential to prevent diabetic cataracts by blocking a critical enzyme in the polyol pathway. | [186] |
Aquilaria malaccensis | Application: anti-cancer potential of hydrosols; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: cytotoxicity assay. | Major compounds: 6-octadecenoic acid (32.18%) and n-hexadecanoic acid (24.92%); Cytotoxic effect: at a concentration of 50 μL/mL with 12 h of exposure, agarwood hydrosol showed 100% inhibition of cell attachment and 95.1% of cytotoxic effects against Calu-3. | [187] |
Clematis flammula | Application: colon carcinoma suppression; Extraction procedure: not mentioned; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (DPPH and FRAP assays), cytotoxicity assay (MTT assay). | Major compounds: pentane-3-methyl, pentane-2-methyl, sulphurous acid, hexyl pentyl ester, cyclopentane methyl, 1-butene-3,3-dimethyl, n-hexane, cyclohexane (% not mentioned); Antioxidant activity: hydrosol showed good antioxidant potential (antioxidant effect close to the standards); Cytotoxic effects: hydrosol acted as a tumour suppressor, being a good sensitizer of TRAIL-induced apoptosis and an anti-inflammatory agent, by reducing the damage effect of colon carcinoma in vivo. | [210] |
Melissa officinalis, Achillea teretifolia, Achillea aleppica, Origanum onites and Salvia fruticosa | Application: cytotoxic effect on the colorectal cell line; Extraction procedure: not mentioned; Chemical composition: not investigated; Biological characterisation: cytotoxicity assay (MTT method). | Cytotoxic effects: IC50 dose values of 25% for O. onites* hydrosol, 25% for M. officinalis* hydrosol and 50% for S. fruticose* hydrosol after 48 h against colorectal cancer. | [211] |
Dittrichia viscosa (L.) Greuter (Asteraceae) | Application: as a natural anticancer agent; Extraction procedure: HD; Chemical composition: GC–MS and HPLC; Biological characterisation: antimicrobial activity (broth microdilution method), cytotoxicity assay (on cancer cells), antiphytoviral activity (on tobacco mosaic virus) | Major compounds:p-menth-1-en-9-ol (29.93%), 1,8-cineole (18.55%), linalool (11.67%), cis-sabinene hydrate (10.97%) and α-muurolol (10.25%); phenolic compound 3,4-dihydroxybenzoic acid (62.24 mg/L); Antimicrobial activity: bacterial and fungal growth was not affected by 25% dilution of hydrosol; Cytotoxic effects: significant inhibition of the division of cancer cells with IC50 values of 21.70% on Hela, 37.73% on HCT116, and 54.51% on U2OS; Antiphytoviral activity: compared with the control on the 3rd and 7th days post inoculation, the percentages of inhibition of local lesions on hydrosol-treated plants were 89.3 and 91.5%, respectively. | [212] |
Zanthoxylum schinifolium | Application: as a therapeutic agent for allergic inflammatory diseases; Extraction procedure: SD; Chemical composition: GC–MS and HPLC; Biological characterisation: cytotoxicity assay (microculture tetrazolium assay), anti-inflammatory activity (reactive oxygen species generation and nitric oxide analysis). | Major compounds: estragole (50.86%) and camphor (30.68%); Cytotoxic effects: treatment with hydrosol (at concentrations of 25–100 ppm) for 24 h showed no significant cytotoxic effects; Anti-allergic effect: An amount of 25–75 ppm hydrosol reduced allergic symptoms. An amount of 100 ppm hydrosol inhibited β-hexominidase release, showing promising anti-allergic quality; Anti-inflammatory activity: An amount of 50–100 ppm hydrosol inhibited reactive oxygen species, and 25 ppm hydrosol significantly decreased nitric oxide production. | [213] |
Mentha pulegium, Mentha suaveolens and Mentha spicata | Application: as natural antimicrobial agent on pathogenic bacteria; Extraction procedure: HD; Chemical composition: not investigated; Biological characterisation: antimicrobial activity (agar disc diffusion and macro-dilution methods). | Antimicrobial activity: the most sensitive bacteria was S. aureus, where M. pulegium hydrosol presented the highest potential (inhibition zone = 35 mm and MIC = 256 μL/mL), followed by M. spicata hydrosol (inhibition zone = 30 mm and MIC = 256 μL/mL), and M. suaveolens hydrosol (inhibition zone = 10 mm and MIC = 512 μL/mL). | [214] |
Mentha rotundifolia and Salvia officinalis | Application: hydrosols on aging-related comorbidities; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: blood–brain barrier and gastro-intestinal absorption of compounds, antioxidant activity (DPPH and ABTS assays), physical change analysis, behavioural tests, tail immersion test for hyperalgesia, acetone test for cold allodynia, biochemical analysis. | Major compounds: M. rotundifolia hydrosol (1,8-cineole (34.45%), (E)-thujone (26.97%), and camphor (20.57%)), S. officinalis hydrosol (1,8-cineole (24.73%), thujone (17.98%), D-camphor (14.16%)); Antioxidant activity: M. rotundifolia (IC50 values of 95.54 and 101.01 μg/mL for DPPH and ABTS, respectively), S. officinalis hydrosol (IC50 values of 84.19 and 82.32 μg/mL for DPPH and ABTS, respectively); Behaviour changes: both hydrosol treatments significantly improved aging-related issues, including locomotion and motor coordination impairments, performance metrics, anxiety symptoms, and short-term spatial memory; Hyperalgesia and cold allodynia: both hydrosols reduce pain sensitivity in rats and show potential in improving cold allodynia in aging rats; | [215] |
Rosa centifolia and Rosa gallica | Application: the potential use of hydrosols to protect the genome against damage caused by alkylating genotoxins; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: cytotoxic and genotoxic activity (on human lymphocytes). | Major compounds: R. centifolia hydrosol (phenylethanol (36.61%), citronellol + nerol (16.25%), and geraniol (17.55%)), R. gallica hydrosol (phenyethanol (42.47%) and geraniol (24.42%)); Cytotoxicity and genotoxicity: combined treatment with the two hydrosols showed strong anti-cytotoxic and anti-genotoxic effects against MNNG. Both rose products significantly reduced chromosome and micronuclei aberrations, demonstrating similar genoprotective potential when non-toxic concentrations were applied before MNNG exposure. | [216] |
Plant Scientific Name | Extraction and Characterisation Methodologies | Main Results | Reference |
---|---|---|---|
Lavandula angustifolia | Application: water phase replacement in cosmetics (body gel) acting as a preservative agent; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (liquid macro dilution method). | Major compounds: fresh herb hydrosol (linalool (53.0%)), dry herb hydrosol (linalool (48.0%)), fresh flower hydrosol (linalool (43.6%)), and dry flower hydrosol (linalool (39.2%)); Antimicrobial activity: the dry flower hydrosol incorporated in moisturizing body gel presented the highest antibacterial activity against E. coli (population extinction in less than 10 days) and S. aureus (population extinction in less than 15 days). Fungi Candida sp. and A. niger were extremely sensitive to the formulation with dry lavender flower hydrosol with population extinction after 2 days. | [192] |
Lavandula angustifolia | Application: assess the potential of hydrosols in providing a base with bioactive properties for natural cosmetics; Extraction procedure: HD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (ORAC and DPPH assays), antimicrobial activity (dilution and plate count method). | Major compounds: all of the hydrosol variants presented linalool (24.2–39.2%), linalool oxide (18.2–25.0%) and borneol (5.8–14.3%); Antioxidant activity: Proportions of 3.6% for DPPH assay and 3.8% for ORAC assay; Antimicrobial activity: low activity (population decrease of 0.05% on B. subtilis, S. aureus, E. coli, P. aeruginosa, Candida sp., A. niger, P. expansum); | [191] |
Cupressus lusitanica Mill. and Cistus ladanifer L. | Application: assess the potential of hydrosols to be used in co-formulations in the perfumery and cosmetic industries; Extraction procedure: HD and SD; Chemical composition: GC–MS; Biological characterisation: antioxidant activity (ABTS assay, xanthine oxidase inhibiting activity, chelating metal ions capacity), antimicrobial activity (agar disc diffusion method), anti-inflammatory activity (albumin denaturation assay). | Major compounds:C. lusitanica SD hydrosol (umbellulone (47.5–48.2%) and terpinen-4-ol (23.5–24.0%)), C. lusitanica HD hydrosol (terpinen-4-ol (21.0–31.4%) and p-cymen-8-ol (10.5–15.7%)); C. ladanifer SD hydrosol (2,6,6-trimethyl cyclohexanone (9.1–12.4%) and trans-pinocarveol (5.0–12.6%)), C. ladanifer HD hydrosol (trans-pinocarveol (7.8%) and verbenone (7.8%)); Antioxidant activity: C. lusitanica hydrosol (3.3% for ABTS assay, 7.5% for superoxide assay, 18.1% for xanthine assay and 33.0% for chelating assay, using 30, 60, 50 and 200 μL of hydrosol, respectively), C. ladanifer hydrosol (8.2% for ABTS assay, 14.3% for superoxide assay, 25.3% for xanthine assay and 24.1% for chelating assay, using 30, 60, 50 and 200 μL of hydrosol, respectively); Antimicrobial activity: hydrosols showed no antimicrobial effect; Anti-inflammatory activity: 1 mL of both hydrosols showed 94–95% of inhibition. | [196] |
Myrica gale L. | Application: assess the hydrosol potential to be a natural cosmetic ingredient; Extraction procedure: SD; Chemical composition: GC–FID and GC–MS; Biological characterisation: antimicrobial activity (broth microdilution method). | Major compounds:M. gale leaf hydrosol (1,8-cineole (28.6%), α-terpineol (15.6%) and terpinen-4-ol (14.3%)), M. gale flower hydrosol (1,8-cineole (44.2%), terpinen-4-ol (13.4%) and α-terpineol (11.3%)); Antimicrobial activity: 75% hydrosol concentration was able to inhibit the growth of 21% of S. aureus, 66% of E. faecalis, 8% of E. coli, 63% of P. aeruginosa. | [217] |
Lavandula angustifolia, Rosa damascena, Chamomilla recutita, Melissa officinalis, Mentha piperita, Juniperus communis, Melaleuca alternifolia, Hamamelis virginiana, Camellia sinensis, Tilia cordata, Prickly pear, Tilia platyphyllos, Rosmarinus officinalis and Anthemis nobilis | Application: characterise the antioxidant capacity of commercial hydrosols available on the cosmetics market in Poland; Extraction procedure: not mentioned (commercial samples); Chemical composition: not investigated; Biological characterisation: antioxidant activity (total polyphenolic content, DPPH and FRAP assays). | Antioxidant activity: the percentage of DPPH radical scavenging amounted to 4.43–39.87%; redox potential was varied in the range of 1325.65–5794.38 μM/L, with the highest observed in the damascus rose* and green tea* hydrosols. | [218] |
Melissa officinalis, Daucus carotae, Thymus vulgaris, Lavandula officinalis, Hypossi officinalis and Chamomillae romanae | Application: estimation of the potential topical application; Extraction procedure: HD; Chemical composition: not investigated; Biological characterisation: antioxidant activity (DPPH assay) and in-vivo safety and efficacy (on humans). | Antioxidant activity: only T. vulgaris* hydrosol achieved IC50, inhibiting 50–80% at a concentration of 10–60%; In-vivo safety and efficacy: the results show that hydrosols were safe for topical use (after 24 h of exposure) and could be beneficial to irritated skin (accelerating the pre-irritated skin recovery process). | [219] |
Piper nigrum | Application: assess the potential of hydrosol to be used as a source of natural antioxidants for cosmetic formulations; Extraction procedure: not mentioned (commercial sample); Chemical composition: headspace-solid phase microextraction followed by GC–MS and GC–FID; Biological characterisation: antioxidant activity (DPPH assay). | Major compounds: α-terpineol (34.7%), borneol (17.3%), terpinen-4-ol (13.9%); Antioxidant activity: the DPPH neutralization was dependent on incubation time. The hydrosol presented higher antioxidant activity than the respective EO, presenting IC50 values of 4.450 and 0.993 mg/cm3 for no incubation and 20 min incubation, respectively. | [220] |
Origanum vulgare spp. hirtum, Salvia officinalis, and Mentha pulegium | Application: assess the hydrosols potential to be implemented in the cosmetics industry as antimicrobial agents or preservatives, such as in the development of oral hygiene products; Extraction procedure: SD; Chemical composition: GC–MS; Biological characterisation: antimicrobial activity (M27-A2—reference method for broth dilution assay). | Major compounds: O. vulgare hydrosol (carvacrol (97.3%)), S. officinalis hydrosol (1,8-cineole (32.6%), α-thujone (22.4%), camphor (11.3%), borneol (22.6%)), M. pulegium hydrosol (pulegone (50.6%), piperitone (32.4%)); Antimicrobial activity: O. vulgare* hydrosol exerted antimicrobial activity against oral pathogens, presenting MIC values of 25 and 35% (v/v) on Streptococcus mutans (MBC value of 30% (v/v)) and Candida albicans (MFC value of 35% (v/v)), respectively. | [221] |
Juniperus phoenicea | Application: assess the hydrosol’s potential as a natural antioxidant product; Extraction procedure: SD; Chemical composition: GC–MS and headspace GC–MS; Biological characterisation: antimicrobial activity (broth microdilution susceptibility testing), antioxidant and anti-inflammatory power (peripheral blood mononuclear cells viability and reactive oxygen species test). | Major compounds: 1,8-cineole (24.9%), camphor (13.0%), α-terpineol (38.1%); General results: The results indicate that hydrosol is a natural product capable of counteracting the pro-inflammatory and oxidizing environment typical of infectious skin diseases caused by S. aureus. | [222] |
5. Ecotoxicological Studies
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Fierascu, R.C.; Fierascu, I.; Baroi, A.M.; Ortan, A. Selected Aspects Related to Medicinal and Aromatic Plants as Alternative Sources of Bioactive Compounds. Int. J. Mol. Sci. 2021, 22, 1521. [Google Scholar] [CrossRef] [PubMed]
- Celano, R.; Piccinelli, A.L.; Pagano, I.; Roscigno, G.; Campone, L.; De Falco, E.; Russo, M.; Rastrelli, L. Oil Distillation Wastewaters from Aromatic Herbs as New Natural Source of Antioxidant Compounds. Food Res. Int. 2017, 99, 298–307. [Google Scholar] [CrossRef]
- de Melo, A.L.F.; Rossato, L.; Barbosa, M.d.S.; Palozi, R.A.C.; Alfredo, T.M.; Antunes, K.A.; Eduvirgem, J.; Ribeiro, S.M.; Simionatto, S. From the Environment to the Hospital: How Plants Can Help to Fight Bacteria Biofilm. Microbiol. Res. 2022, 261, 127074. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An Overview of Natural Antimicrobials Role in Food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Almeida, H.H.S.; Crugeira, P.J.L.; Amaral, J.S.; Rodrigues, A.E.; Barreiro, M.F. Disclosing the Potential of Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu, and Melissa officinalis L. Hydrosols as Eco-Friendly Antimicrobial Agents. Nat. Prod. Bioprospect. 2024, 14, 1. [Google Scholar] [CrossRef]
- Aćimović, M.; Tešević, V.; Smiljanić, K.; Cvetković, M.; Stanković, J.; Kiprovski, B.; Sikora, V. Hydrolates: By-Products of Essential Oil Distillation: Chemical Composition, Biological Activity and Potential Uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Šilha, D.; Švarcová, K.; Bajer, T.; Královec, K.; Tesařová, E.; Moučková, K.; Pejchalová, M.; Bajerová, P. Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-like Cells in Comparison with Other Microorganisms. Molecules 2020, 25, 5654. [Google Scholar] [CrossRef]
- Bor, T.; Aljaloud, S.O.; Gyawali, R.; Ibrahim, S.A. Antimicrobials from Herbs, Spices, and Plants. In Fruits, Vegetables and Fruits; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Arsanjani, Z.N.; Etemadfard, H.; Moein, M. Comparative Chemical Evaluation of Commercially Available Mint Hydrosols Produced in Fars Province, Iran. J. Rep. Pharm. Sci. 2020, 9, 52–58. [Google Scholar] [CrossRef]
- Hamedi, A.; Moheimani, S.M.; Sakhteman, A.; Etemadfard, H.; Moein, M. An Overview on Indications and Chemical Composition of Aromatic Waters (Hydrosols) as Functional Beverages in Persian Nutrition Culture and Folk Medicine for Hyperlipidemia and Cardiovascular Conditions. J. Evid.-Based Complement. Altern. Med. 2017, 22, 544–561. [Google Scholar] [CrossRef]
- Değirmenci, H.; Erkurt, H. Relationship between Volatile Components, Antimicrobial and Antioxidant Properties of the Essential Oil, Hydrosol and Extracts of Citrus aurantium L. Flowers. J. Infect. Public Health 2020, 13, 58–67. [Google Scholar] [CrossRef]
- Kahar, M.; Fauzi, M.; Mamat, R. Properties and Potential of Agarwood Hydrosol as a Drink: A Review. Food Res. 2021, 5, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Sakarikou, C.; Kostoglou, D.; Simões, M.; Giaouris, E. Exploitation of Plant Extracts and Phytochemicals against Resistant Salmonella Spp. in Biofilms. Food Res. Int. 2020, 128, 108806. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, S.; Serio, A.; López, C.C.; Paparella, A. Hydrosols: Biological Activity and Potential as Antimicrobials for Food Applications. Food Control 2018, 86, 126–137. [Google Scholar] [CrossRef]
- Di Vito, M.; Smolka, A.; Proto, M.R.; Barbanti, L.; Gelmini, F.; Napoli, E.; Bellardi, M.G.; Mattarelli, P.; Beretta, G.; Sanguinetti, M.; et al. Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils? Antibiotics 2021, 10, 88. [Google Scholar] [CrossRef]
- Politi, M.; Menghini, L.; Conti, B.; Bedini, S.; Farina, P.; Cioni, P.L.; Braca, A.; De Leo, M. Reconsidering Hydrosols as Main Products of Aromatic Plants Manufactory: The Lavandin. Molecules 2020, 25, 2225. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Roscigno, G.; Pane, C.; Celano, G.; Di Matteo, M.; Mainente, M.; Vuotto, A.; Mencherini, T.; Esposito, T.; Vitti, A.; et al. Essential Oils and Quality Composts Sourced by Recycling Vegetable Residues from the Aromatic Plant Supply Chain. Ind. Crops Prod. 2021, 162, 113255. [Google Scholar] [CrossRef]
- Turrini, F.; Beruto, M.; Mela, L.; Curir, P.; Triglia, G.; Boggia, R.; Zunin, P.; Monroy, F. Ultrasound-Assisted Extraction of Lavender (Lavandula angustifolia Miller, Cultivar Rosa) Solid By-Products Remaining after the Distillation of the Essential Oil. Appl. Sci. 2021, 11, 5495. [Google Scholar] [CrossRef]
- de Elguea-Culebras, G.O.; Bravo, E.M.; Sánchez-Vioque, R. Potential Sources and Methodologies for the Recovery of Phenolic Compounds from Distillation Residues of Mediterranean Aromatic Plants. An Approach to the Valuation of by-Products of the Essential Oil Market—A Review. Ind. Crops Prod. 2022, 175, 114261. [Google Scholar] [CrossRef]
- Tang, M.; Song, F.; Huang, L.; Qin, W.; Chen, H.; Liu, L. Solvent-Free Microwave-Assisted Extraction of Essential Oil and Hydrosol from Piper Longum Linn. Fruit and Evaluation of Antioxidant Activities. J. Essent. Oil-Bear. Plants 2021, 24, 753–771. [Google Scholar] [CrossRef]
- Timung, R.; Barik, C.R.; Purohit, S.; Goud, V.V. Composition and Anti-Bacterial Activity Analysis of Citronella Oil Obtained by Hydrodistillation: Process Optimization Study. Ind. Crops Prod. 2016, 94, 178–188. [Google Scholar] [CrossRef]
- Traka, C.K.; Petrakis, E.A.; Kimbaris, A.C.; Polissiou, M.G.; Perdikis, D.C. Effects of Ocimum basilicum and Ruta Chalepensis Hydrosols on Aphis Gossypii and Tetranychus Urticae. J. Appl. Entomol. 2018, 142, 413–420. [Google Scholar] [CrossRef]
- Acheampong, A.; Borquaye, L.S.; Acquaah, S.O.; Osei-owusu, J.; Tuani, G.K. Antimicrobial Activities of Some Leaves and Fruit Peels Hydrosols. Int. J. Chem. Biomol. Sci. 2015, 1, 158–162. [Google Scholar]
- Marino, A.; Nostro, A.; Mandras, N.; Roana, J.; Ginestra, G.; Miceli, N.; Taviano, M.F.; Gelmini, F.; Beretta, G.; Tullio, V. Evaluation of Antimicrobial Activity of the Hydrolate of Coridothymus capitatus (L.) Reichenb. Fil. (Lamiaceae) Alone and in Combination with Antimicrobial Agents. BMC Complement. Med. Ther. 2020, 20, 89. [Google Scholar] [CrossRef]
- Labadie, C.; Ginies, C.; Guinebretiere, M.H.; Renard, C.M.G.C.; Cerutti, C.; Carlin, F. Hydrosols of Orange Blossom (Citrus aurantium), and Rose Flower (Rosa damascena and Rosa centifolia) Support the Growth of a Heterogeneous Spoilage Microbiota. Food Res. Int. 2015, 76, 576–586. [Google Scholar] [CrossRef]
- Lemouchi, R.; Selles, C.; Dib, M.E.A.; Benmansour, N.; Allal, A.; Tabti, B.; Ouali, K. Chemical Composition and Antioxidant Activity of Essential Oil and Hydrosol Extract Obtained by Hydrodistillation (HY) and Liquid–Liquid Extraction (LLE) of Psoralea bituminosa. J. Herbs Spices Med. Plants 2017, 23, 299–307. [Google Scholar] [CrossRef]
- Rao, B.R.R. Hydrosols and Water-Soluble Essential Oils: Medicinal and Biological Properties. In Recent Progress in Medicinal Plants Essential Oils I; Studium Press LLC: Houston, TX, USA, 2013; pp. 120–140. [Google Scholar]
- Chemat, F.; Boutekedjiret, C. Extraction // Steam Distillation. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Pheko-Ofitlhile, T.; Makhzoum, A. Impact of Hydrodistillation and Steam Distillation on the Yield and Chemical Composition of Essential Oils and Their Comparison with Modern Isolation Techniques. J. Essent. Oil Res. 2024, 36, 105–115. [Google Scholar] [CrossRef]
- Berktas, S.; Cam, M. Peppermint Leaves Hydrodistillation By-Products: Bioactive Properties and Incorporation into Ice Cream Formulations. J. Food Sci. Technol. 2020, 58, 4282–4293. [Google Scholar] [CrossRef]
- İncegül, Y.; Çam, M. Recovery of Water-Soluble Materials after Distillation of Sage (Salvia officinalis L.) and the Use of Materials in the Production of Cake and Ice Cream. J. Food Meas. Charact. 2021, 15, 2688–2694. [Google Scholar] [CrossRef]
- Cid-Pérez, T.S.; Ávila-Sosa, R.; Ochoa-Velasco, C.E.; Rivera-Chavira, B.E.; Nevárez-Moorillón, G.V. Antioxidant and Antimicrobial Activity of Mexican Oregano (Poliomintha longiflora) Essential Oil, Hydrosol and Extracts Fromwaste Solid Residues. Plants 2019, 8, 22. [Google Scholar] [CrossRef]
- Azhar, M.A.; Rahman, N.W.A.; Aziz, M.A.A.; Isa, K.M. Identification of Chemical Compounds from Agarwood Hydrosol (Aquilaria malaccensis) Fruits via LC-QTOF-MS/MS Analysis. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 765. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, S.R.; Jeong, M.S.; Choi, M.; Park, S.J.; Kim, K.N. Protective Effect of Brassica napus L. Hydrosols against Inflammation Response in RAW 264.7 Cells. Chin. J. Integr. Med. 2021, 27, 273–279. [Google Scholar] [CrossRef]
- Lei, K.; Wang, X.; Li, X.; Wang, L. The Innovative Fabrication and Applications of Carvacrol Nanoemulsions, Carboxymethyl Chitosan Microgels and Their Composite Films. Colloids Surf. B Biointerfaces 2019, 175, 688–696. [Google Scholar] [CrossRef]
- Munro, I.C.; Danielewska-Nikiel, B. Comparison of Estimated Daily Intakes of Flavouring Substances with No-Observed-Effect Levels. Food Chem. Toxicol. 2006, 44, 758–809. [Google Scholar] [CrossRef] [PubMed]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Comparison of Chemical Composition and Biological Properties of Essential Oils Obtained by Hydrodistillation and Steam Distillation of Laurus nobilis L. Plant Foods Hum. Nutr. 2020, 75, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Giannenas, I.; Bonos, E.; Florou-Paneri, P. Innovative Uses of Aromatic Plants as Natural Supplements in Nutrition. In Food Additives; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Kokalj Ladan, M.; Kočevar Glavač, N. GC–MS Analysis of A Helichrysum Italicum Hydrosol: Sensitivity, Repeatability and Reliability of Solvent Extraction versus Direct Hydrosol Analysis. Appl. Sci. 2022, 12, 10040. [Google Scholar] [CrossRef]
- Ndiaye, E.H.B.; Gueye, M.T.; Ndiaye, I.; Diop, S.M.; DIOP, M.B.; Fauconnier, M.-L.; Lognay, G. Chemical Composition of Essential Oils and Hydrosols of Three Eucalyptus Species from Senegal: Eucalyptus alba Renv, Eucalyptus camaldulensis Dehnh and Eucalyptus tereticornis Hook. Am. J. Essent. Oils Nat. Prod. 2017, 5, 1–7. [Google Scholar]
- Ghavidel, F.; Zarshenas, M.M.; Ghasemi, Y.; Gholami, A.; Sakhteman, A.; Fari, P. Impact of Two Dif-ferent Extraction Methods on Chemical Composition and Antimicrobial Activities of Multi-Ingredients Essential Oils and Hydrosols. Trends Pharm. Sci. 2018, 4, 161–176. [Google Scholar]
- Tavares, C.S.; Gameiro, J.A.; Roseiro, L.B.; Figueiredo, A.C. Hydrolates: A Review on Their Volatiles Composition, Biological Properties and Potential Uses. Phytochem. Rev. 2022, 21, 1661–1737. [Google Scholar] [CrossRef]
- Benoudjit, F.; Hamoudi, I.; Aboulouz, A.; History, A. Extraction and Characterization of Essential Oil and Hydrolate Obtained from an Algerian Lemongrass (Cymbopogon Citratus). Alger. J. Environ. Sci. Technol. 2022, 8, 2256–2263. [Google Scholar]
- Selles, C.; Lemouchi, R.; Dib, M.E.A. Chemical Constituents of Essential Oil and Hydrosol Extract from Teucrium Kabylicum Batt., an Endemic Species from Algeria. Agric. Conspec. Sci. 2020, 85, 375–377. [Google Scholar]
- Lei, G.; Song, C.; Luo, Y. Chemical Composition of Hydrosol Volatiles of Flowers from Ten Paeonia × suffruticosa Andr. Cultivars from Luoyang, China. Nat. Prod. Res. 2020, 35, 3509–3513. [Google Scholar] [CrossRef]
- Grubešić, R.J.; Nazlić, M.; Miletić, T.; Vuko, E.; Vuletić, N.; Ljubenkov, I.; Dunkić, V. Antioxidant Capacity of Free Volatile Compounds from Olea europaea L. Cv. Oblica Leaves Depending on the Vegetation Stage. Antioxidants 2021, 10, 1832. [Google Scholar] [CrossRef]
- Dobreva, A.; Nedeva, D.; Mileva, M. Comparative Study of the Yield and Chemical Profile of Rose Oils and Hydrosols Obtained by Industrial Plantations of Oil-Bearing Roses in Bulgaria. Resources 2023, 12, 83. [Google Scholar] [CrossRef]
- Shiati, A.; Moein, M.; Sakhteman, A.; Amiri-Ardekani, E.; Zarshenas, M.M. Borage Aromatic Water as a Medicinal Drink: Chemical Composition Analysis of Different Populations in the Local Markets of Iran. Lett. Appl. NanoBioScience 2021, 10, 2535–2545. [Google Scholar] [CrossRef]
- Yao, L.; Sun, J.; Liang, Y.; Feng, T.; Wang, H.; Sun, M.; Yu, W. Volatile Fingerprints of Torreya Grandis Hydrosols under Different Downstream Processes Using HS-GC–IMS and the Enhanced Stability and Bioactivity of Hydrosols by High Pressure Homogenization. Food Control 2022, 139, 109058. [Google Scholar] [CrossRef]
- Lahmar, I.; Mosbahi, N.; Yotova, L. Hydrosol Extract from Aerial Parts of Rosmarinus officinalis Cultivated in Metouia Oasis-Biochemical Composition and Enzymes Content. J. Oasis Agric. Sustain. Dev. 2023, 5, 1–8. [Google Scholar] [CrossRef]
- Chraka, A.; Raissouni, I.; Kassout, J.; Ezzaki, M.; Ben Seddik, N.; Janoub, F.; Manssouri, M.; Belcadi, H.; Ibn Mansour, A.; Bouchta, D. Understanding the Synergistic Inhibition Effect of Hydrosol Extract Derivatives as Eco-Friendly Anti-Corrosive for Copper Alloy: GC–MS Identification, An Electrochemical, Surface Morphology and Computational Modeling. J. Mol. Liq. 2023, 392, 123507. [Google Scholar] [CrossRef]
- Ieri, F.; Cecchi, L.; Giannini, E.; Clemente, C.; Romani, A. GC-MS and HS-SPME-GC×GC-TOFMS Determi-nation of the Volatile Composition of Essential Oils and Hydrosols (By-Products) from Four Eucalyptus Species Cultivated in Tuscany. Molecules 2019, 24, 226. [Google Scholar] [CrossRef]
- Aćimović, M.; Jeremić, J.S.; Todosijević, M.; Kiprovski, B.; Vidović, S.; Vladić, J.; Pezo, L. Comparative Study of the Essential Oil and Hydrosol Composition of Sweet Wormwood (Artemisia annua L.) from Serbia. Chem. Biodivers. 2022, 19, e202100954. [Google Scholar] [CrossRef]
- Acimovic, M.G.; Loncar, B.L.; Jeliazkov, V.D.; Pezo, L.L.; Ljujic, J.P.; Miljkovic, A.R.; Vujisic, L.V. Comparison of Volatile Compounds from Clary Sage (Salvia sclarea L.) Verticillasters Essential Oil and Hy-drolate. J. Essent. Oil-Bear. Plants 2022, 25, 555–570. [Google Scholar] [CrossRef]
- Aćimović, M.; Lončar, B.; Stanković Jeremić, J.; Cvetković, M.; Pezo, L.; Pezo, M.; Todosijević, M.; Tešević, V. Weather Conditions Influence on Lavandin Essential Oil and Hydrolate Quality. Horticulturae 2022, 8, 281. [Google Scholar] [CrossRef]
- Krajewska, A.; Mietlińska, K. Determining the Parameters of the Stinging Nettle (Urtica dioica L.) Hydrolate Distillation Process. Molecules 2022, 27, 3912. [Google Scholar] [CrossRef]
- Manousi, N.; Kalogiouri, N.P.; Kokokiris, L.; Anthemidis, A.; Zachariadis, G.A. Rapid Multielemental In-ductively Coupled Plasma–Atomic Emission Spectrometric (ICP-AES) Method for the Assessment of the Quality of Flower Waters. Anal. Lett. 2021, 55, 123–131. [Google Scholar] [CrossRef]
- Francezon, N.; Stevanovic, T. Chemical Composition of Essential Oil and Hydrosol from Picea Mariana Bark Residue. Bioresources 2017, 12, 2635–2645. [Google Scholar] [CrossRef]
- Nazlić, M.; Akrap, K.; Kremer, D.; Dunkić, V. Hydrosols of Veronica Species—Natural Source of Free Volatile Compounds with Potential Pharmacological Interest. Pharmaceuticals 2022, 15, 1378. [Google Scholar] [CrossRef]
- Nazlić, M.; Kremer, D.; Akrap, K.; Topić, S.; Vuletić, N.; Dunkić, V. Extraction, Composition and Comparisons–Free Volatile Compounds from Hydrosols of Nine Veronica Taxa. Horticulturae 2022, 9, 16. [Google Scholar] [CrossRef]
- Gonzalez-Rivera, J.; Campanella, B.; Pulidori, E.; Bramanti, E.; Tiné, M.R.; Bernazzani, L.; Onor, M.; Bàrberi, P.; Duce, C.; Ferrari, C. From Volatiles to Solid Wastes: Towards the Full Valorization of Lavender and Rosemary by Simultaneous in Situ Microwaves and Ultrasounds Irradiation Extraction. Ind. Crops Prod. 2023, 194, 116362. [Google Scholar] [CrossRef]
- Ürgeová, E.; Uváčková, Ľ.; Vaneková, M.; Maliar, T. Antibacterial Potential of Microwave-Assisted Extraction Prepared Hydrolates from Different Salvia Species. Plants 2023, 12, 1325. [Google Scholar] [CrossRef]
- Xu, S.; Zuo, C.; Sun, X.; Ding, X.; Zhong, Z.; Xing, W.; Jin, W. Enriching Volatile Aromatic Compounds of Lavender Hydrolats by PDMS/Ceramic Composite Membranes. Sep. Purif. Technol. 2022, 294, 121198. [Google Scholar] [CrossRef]
- Dawiec-Liśniewska, A.; Szumny, A.; Podstawczyk, D.; Witek-Krowiak, A. Concentration of Natural Aroma Compounds from Fruit Juice Hydrolates by Pervaporation in Laboratory and Semi-Technical Scale. Part 1. Base Study. Food Chem. 2018, 258, 63–70. [Google Scholar] [CrossRef]
- Podstawczyk, D.; Mitkowski, P.T.; Dawiec-Liśniewska, A.; Witek-Krowiak, A. Concentration of Natural Aroma Compounds from Fruit Juice Hydrolates by Pervaporation in Laboratory and Semi-Technical Scale. Part 2. Economic Analysis. J. Clean. Prod. 2017, 165, 509–519. [Google Scholar] [CrossRef]
- de Elguea-Culebras, G.O.; Panamá-Tapia, L.A.; Melero-Bravo, E.; Cerro-Ibáñez, N.; Calvo-Martínez, A.; Sánchez-Vioque, R. Comparison of the Phenolic Composition and Biological Capacities of Wastewater from Origanum vulgare L., Rosmarinus officinalis L., Salvia lavandulifolia Vahl. and Thymus mastichina L. Re-sulting from Two Hydrodistillation Systems: Clevenger and MAE. J. Appl. Res. Med. Aromat. Plants 2023, 34, 100480. [Google Scholar] [CrossRef]
- Luca, S.V.; Zengin, G.; Sinan, K.I.; Korona-Glowniak, I.; Minceva, M.; Skalicka-Woźniak, K.; Trifan, A. Value-Added Compounds with Antimicrobial, Antioxidant, and Enzyme-Inhibitory Effects from Post-Distillation and Post-Supercritical CO2 Extraction By-Products of Rosemary. Antioxidants 2023, 12, 244. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Zengin, G.; Sinan, K.I.; Skalicka-Woźniak, K.; Trifan, A. Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors. Antioxidants 2023, 12, 210. [Google Scholar] [CrossRef] [PubMed]
- Miljanović, A.; Dent, M.; Grbin, D.; Pedisić, S.; Zorić, Z.; Marijanović, Z.; Jerković, I.; Bielen, A. Sage, Rosemary, and Bay Laurel Hydrodistillation By-Products as a Source of Bioactive Compounds. Plants 2023, 12, 2394. [Google Scholar] [CrossRef] [PubMed]
- Tsiaka, T.; Stavropoulou, N.A.; Giannakourou, M.C.; Strati, I.F.; Sinanoglou, V.J. Optimization of Ultra-sound-Assisted Extraction and Characterization of the Phenolic Compounds in Rose Distillation Side Streams Using Spectrophotometric Assays and High-Throughput Analytical Techniques. Molecules 2023, 28, 7403. [Google Scholar] [CrossRef] [PubMed]
- Vareltzis, P.; Fotiou, D.; Papatheologou, V.; Kyroglou, S.; Tsachouridou, E.; Goula, A.M. Optimized Solid–Liquid Separation of Phenolics from Lavender Waste and Properties of the Dried Extracts. Separations 2024, 11, 67. [Google Scholar] [CrossRef]
- Buckle, J. Basic Plant Taxonomy, Basic Essential Oil Chemistry, Extraction, Biosynthesis, and Analysis. In Clinical Aromatherapy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 37–72. [Google Scholar] [CrossRef]
- Smigielski, K.B.; Prusinowska, R.; Bemska, J.E. Comparison of the Chemical Composition of Essential Oils and Hydrolates from Basil (Ocimum basilicum L.). J. Essent. Oil-Bear. Plants 2016, 19, 492–498. [Google Scholar] [CrossRef]
- Tomi, K.; Kitao, M.; Konishi, N.; Murakami, H.; Matsumura, Y.; Hayashi, T. Enantioselective GC-MS Analysis of Volatile Components from Rosemary (Rosmarinus officinalis L.) Essential Oils and Hydrosols. Biosci. Biotechnol. Biochem. 2016, 80, 840–847. [Google Scholar] [CrossRef]
- Ndiaye, E.H.B.; Gueye, M.T.; Ndiaye, I.; Diop, S.M.; Diop, M.B.; Thiam, A.; Fauconnier, M.L.; Lognay, G. Chemical Composition of Distilled Essential Oils and Hydrosols of Four Senegalese Citrus and Enantiomeric Characterization of Chiral Compounds. J. Essent. Oil-Bear. Plants 2017, 20, 820–834. [Google Scholar] [CrossRef]
- Nanashima, N.; Kitajima, M.; Takamagi, S.; Fujioka, M.; Tomisawa, T. Comparison of Chemical Composition between Kuromoji (Lindera umbellata) Essential Oil and Hydrosol and Determination of the Deodorizing Effect. Molecules 2020, 25, 4195. [Google Scholar] [CrossRef]
- Chizzola, R.; Billiani, F.; Singer, S.; Novak, J. Diversity of Essential Oils and the Respective Hydrolates Ob-tained from Three Pinus Cembra Populations in the Austrian Alps. Appl. Sci. 2021, 11, 5686. [Google Scholar] [CrossRef]
- Truzzi, E.; Benvenuti, S.; Bertelli, D.; Francia, E.; Ronga, D. Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin (Lavandula × intermedia Emeric Ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules 2021, 26, 6157. [Google Scholar] [CrossRef] [PubMed]
- Riyankati, B.; Hadi, S.; Handayani, S.S. Characterization and Chemical Composition Analysis of Tea Tree (Meleuca alternifolia) Leaf Hydrosols Growing on Lombok Island. J. Penelit. Pendidik. IPA 2022, 8, 119–123. [Google Scholar] [CrossRef]
- Ni, Z.J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Recent Updates on the Chemistry, Bioactivities, Mode of Action, and Industrial Applications of Plant Essential Oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Gonçalves, B. Bioactive (Poly)Phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods 2021, 10, 106. [Google Scholar] [CrossRef]
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural Products with Preservative Properties for Enhancing the Microbiological Safety and Extending the Shelf-Life of Seafood: A Review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef]
- Hung, T.T.; Trang, P.T.; Viet, H.; Lan, N.T.M.; Ngan, L.T.M.; Hieu, T.T. In Vitro Antimicrobial Activity of Hydrosol from Litsea cubeba (Lour.) Pers. against Helicobacter Pylori and Candida Albicans. Biomed. Res. Ther. 2020, 7, 3819–3828. [Google Scholar] [CrossRef]
- Mu, S.; Yang, W.; Huang, G. Antioxidant Activities and Mechanisms of Polysaccharides. Chem. Biol. Drug Des. 2021, 97, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Yarley, O.P.N.; Kojo, A.B.; Zhou, C.; Yu, X.; Gideon, A.; Kwadwo, H.H.; Richard, O. Reviews on Mechanisms of in Vitro Antioxidant, Antibacterial and Anticancer Activities of Water-Soluble Plant Polysaccharides. Int. J. Biol. Macromol. 2021, 183, 2262–2271. [Google Scholar] [CrossRef]
- Merad Boussalah, N. Chemical Composition and Biological Activities of Essential Oil and Hydrosol Extract from Aerial Parts of Cynoglossum cheirifolium L. from Algeria. J. Essent. Oil-Bear. Plants 2020, 23, 97–104. [Google Scholar] [CrossRef]
- Lagrouh, F.; Dakka, N.; Bakri, Y. The Antifungal Activity of Moroccan Plants and the Mechanism of Action of Secondary Metabolites from Plants. J. Mycol. Medicale 2017, 27, 303–311. [Google Scholar] [CrossRef]
- Lin, H.; Tsao, R. Antimicrobials from Plants—Food Preservation and Shelf-Life Extension. Compr. Biotechnol. 2019, 4, 703–714. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The Antibacterial Properties of Phenolic Isomers, Carvacrol and Thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, G.E.; Lawrence, R. Mechanisms of Bactericidal Action of Eugenol against Escherichia coli. J. Herb. Med. 2021, 26, 100406. [Google Scholar] [CrossRef]
- Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical Variability, Antioxidant and Antifungal Activities of Essential Oils and Hydrosol Extract of Calendula arvensis L. from Western Algeria. Chem. Biodivers. 2017, 14, e1600482. [Google Scholar] [CrossRef]
- Bellahsene, C.; Bendahou, M.; Khadir, A.; Zenati, F.; Benbelaïd, F.; Aissaoui, N.; Muselli, A.; Costa, J. An-timicrobial Activity and Chemical Composition of Essential Oil and Hydrosol Extract of Nepeta nepetella Subsp. Amethystina (Poir.) Briq. from Algeria. J. Appl. Pharm. Sci. 2015, 5, 021–025. [Google Scholar] [CrossRef]
- El Bouny, H.; Ouahzizi, B.; Sellam, K.; Alem, C. Reconsidering the Hydrosols of Four Aromatic Plants from the Toudgha Region (South East of Morocco). J. Anal. Sci. Appl. Biotechnol. 2021, 3, 126–132. [Google Scholar] [CrossRef]
- Di Vito, M.; Vergari, L.; Mariotti, M.; Proto, M.R.; Barbanti, L.; Garzoli, S.; Sanguinetti, M.; Sabatini, L.; Peduzzi, A.; Bellardi, M.G.; et al. Anti-Mold Effectiveness of a Green Emulsion Based on Citrus Aurantium Hydrolate and Cinnamomum Zeylanicum Essential Oil for the Modern Paintings Restoration. Microorganisms 2022, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan Eliuz, E.; Bahadırlı, N.P. Investigation of Antibacterial Activity and Mechanism of T. Spicata Essential Oil, and Activation of the Hydrosol Formed as a by-Product with UV. Biologia 2023, 78, 1161–1170. [Google Scholar] [CrossRef]
- Santarsiero, A.; Onzo, A.; Pascale, R.; Acquavia, M.A.; Coviello, M.; Convertini, P.; Todisco, S.; Marsico, M.; Pifano, C.; Iannece, P.; et al. Pistacia Lentiscus Hydrosol: Untargeted Metabolomic Analysis and Anti-Inflammatory Activity Mediated by NF-κ B and the Citrate Pathway. Oxid. Med. Cell. Longev. 2020, 2020, 4264815. [Google Scholar] [CrossRef]
- Bensid, A.; El Abed, N.; Houicher, A.; Regenstein, J.M.; Özogul, F. Antioxidant and Antimicrobial Pre-servatives: Properties, Mechanism of Action and Applications in Food—A Review. Crit. Rev. Food Sci. Nutr. 2020, 62, 2985–3001. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.T.; Khan, N.A.; Mahmood, A.; Al-Kedhairy, A.A.; Alkhathlan, H.Z. The Composition of the Essential Oil and Aqueous Distillate of Origanum vulgare L. Growing in Saudi Arabia and Evaluation of Their Antibacterial Activity. Arab. J. Chem. 2018, 11, 1189–1200. [Google Scholar] [CrossRef]
- Culmone, A.; Mirabile, G.; Tinebra, I.; Michelozzi, M.; Carrubba, A.; Bellardi, M.G.; Farina, V.; Romanazzi, G.; Torta, L. Hydrolate and EO Application to Reduce Decay of Carica Papaya during Storage. Horticulturae 2023, 9, 204. [Google Scholar] [CrossRef]
- Moukhles, A.; Ellaghdach, A.; Driss, A.B.; Amrani, M.A.E.; Aghmiz, A.; Mansour, A.I. Chemical Profile and in Vitro Antibacterial Potential of Essential Oils and Hydrolat Extracts from Aerial Parts of Three Wild Species of Moroccan Thymus. Sci. Afr. 2022, 18, e01434. [Google Scholar] [CrossRef]
- Yavuzer, E.; Kuley, E.B. Testing the Antimicrobial Effects of Some Hydrosols on Food Borne-Pathogens and Spoilage Bacteria. J. Limnol. Freshw. Fish. Res. 2020, 6, 47–51. [Google Scholar] [CrossRef]
- Yavuzer, E.; Yetişen, M.; Uslu, D.Y. Application of Atomized Hydrosols to Rainbow Trout Fillets as an Easy Preservative Gökkuşağı Alabalığı Filetolarına Kolay Bir Koruyucu Olarak Atomize Hidrosollerin Uygulanması. Bilim. Derg./NOHU. J. Eng. Sci. 2023, 12, 1403–1408. [Google Scholar] [CrossRef]
- Gharb, L.A. Comparison between the Antioxidant Activity of Volatile Oil and Hydrosol in Eucalyptus Camaldulensis (Young and Adult) Leaves. Indian J. Public Health Res. Dev. 2020, 11, 1224. [Google Scholar] [CrossRef]
- Aćimović, M.; Šovljanski, O.; Šeregelj, V.; Pezo, L.; Zheljazkov, V.D.; Ljujić, J.; Tomić, A.; Ćetković, G.; Čanadanović-Brunet, J.; Miljković, A.; et al. Chemical Composition, Antioxidant, and Antimicrobial Ac-tivity of Dracocephalum moldavica L. Essential Oil and Hydrolate. Plants 2022, 11, 941. [Google Scholar] [CrossRef]
- Erceg, T.; Šovljanski, O.; Tomić, A.; Aćimović, M.; Stupar, A.; Baloš, S. Comparison of the Properties of Pul-lulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life. Polymers 2024, 16, 178. [Google Scholar] [CrossRef]
- Gavriil, A.; Zilelidou, E.; Papadopoulos, A.E.; Siderakou, D.; Kasiotis, K.M.; Haroutounian, S.A.; Gardeli, C.; Giannenas, I.; Skandamis, P.N. Evaluation of Antimicrobial Activities of Plant Aqueous Extracts against Salmonella Typhimurium and Their Application to Improve Safety of Pork Meat. Sci. Rep. 2021, 11, 21971. [Google Scholar] [CrossRef]
- Shen, X.; Chen, W.; Zheng, Y.; Lei, X.; Tang, M.; Wang, H.; Song, F. Chemical Composition, Antibacterial and Antioxidant Activities of Hydrosols from Different Parts of Areca catechu L. and Cocos nucifera L. Ind. Crops Prod. 2017, 96, 110–119. [Google Scholar] [CrossRef]
- Hay, Y.O.; Abril-Sierra, M.A.; Sequeda-Castañeda, L.G.; Bonnafous, C.; Raynaud, C. Evaluation of Com-binations of Essential Oils and Essential Oils with Hydrosols on Antimicrobial and Antioxidant Activities. J. Pharm. Pharmacogn. Res. 2018, 6, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Didar, Z. Investigating the Mechanical, Physical and Antimicrobial Properties of Gelatin Films Containing Cinnamomum Verum Hydrosol. J. Food Bioprocess. Eng. 2019, 2, 113–118. [Google Scholar]
- Allal, A.; Bellifa, S.; Benmansour, N.; Selles, C.; Semaoui, M.; Hassaine, H.; Muselli, A. Essential Oil and Hydrosol Extract Chemical Profile, Antioxidant and Antimicrobial Potential of Daphne gnidium L. from Algeria. J. Essent. Oil-Bear. Plants 2019, 22, 1277–1288. [Google Scholar] [CrossRef]
- Kalemba-Drozdz, M.; Cierniak, A. Antioxidant and Genoprotective Properties of Extracts from Edible Flowers. J. Food Nutr. Res. 2019, 58, 42–50. [Google Scholar]
- Georgieva, A.; Dobreva, A.; Tzvetanova, E.; Alexandrova, A.; Mileva, M. Comparative Study of Phytochemical Profiles and Antioxidant Properties of Hydrosols from Bulgarian Rosa alba L. and Rosa damascena Mill. J. Essent. Oil-Bear. Plants 2019, 22, 1362–1371. [Google Scholar] [CrossRef]
- Weiqiong, Y.; Xue, H.; Yi, W.; Jianzhong, H.; Zhaolin, L. Composition and Antimicrobial Activity of Bamboo (Phyllostachys Heterocycla Cv. Pubescens) Leaf Hydrosols. Curr. Top. Nutraceutical Res. 2020, 18, 207–219. [Google Scholar] [CrossRef]
- Khalaf, Z.Z.; Zahra, L.A. Evaluation of the Activity of Essential Oil and Hydrosol from Eucalyptus Camal-dulensis against Some Bacterial Species. Iraqi J. Sci. 2020, 61, 1282–1288. [Google Scholar] [CrossRef]
- Mercier, S.; Lorenzo, R.Y.; Pichette, A.; Côté, H.; Legault, J.; St-Gelais, A. Pili Tree (Canarium ovatum) Resin’s Antibacterial Essential Oil and Hydrosol as Rich Sources of (S)-Phellandrenes Derivatives. Chem. Biodivers. 2020, 17, e2000561. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Caniklioğlu, A. Antimicrobial and Antioxidant Potentials, Total Phenolic Contents of Some Herbal Waters. Eur. J. Biol. Res. 2021, 11, 203–211. [Google Scholar] [CrossRef]
- Ovidi, E.; Masci, V.L.; Zambelli, M.; Tiezzi, A.; Vitalini, S.; Garzoli, S. Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities. Plants 2021, 10, 707. [Google Scholar] [CrossRef]
- Garzoli, S.; Masci, V.L.; Franceschi, S.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Headspace/Gc–Ms Analysis and Investigation of Antibacterial, Antioxidant and Cytotoxic Activity of Essential Oils and Hydrolates from Ros-marinus officinalis L. and Lavandula angustifolia Miller. Foods 2021, 10, 1768. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.L.; Lupitu, A.; Mot, M.D.; Copolovici, L.; Moisa, C.; Copolovici, D.M. Chemical and Biochemical Characterization of Essential Oils and Their Corresponding Hydrolats from Six Species of the Lamiaceae Family. Plants 2021, 10, 2489. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, S.; Rossi, C.; Maggio, F.; Valbonetti, L.; Savini, V.; Paparella, A.; Serio, A. Antilisterial Effectiveness of Origanum vulgare Var. Hirtum and Coridothymus capitatus Essential Oils and Hydrolates Alone and in Combination. Foods 2024, 13, 860. [Google Scholar] [CrossRef]
- Campana, R.; Baffone, W. Carvacrol Efficacy in Reducing Microbial Biofilms on Stainless Steel and in Limiting Re-Growth of Injured Cells. Food Control 2018, 90, 10–17. [Google Scholar] [CrossRef]
- Gray, J.A.; Chandry, P.S.; Kaur, M.; Kocharunchitt, C.; Bowman, J.P.; Fox, E.M. Novel Biocontrol Methods for Listeria Monocytogenes Biofilms in Food Production Facilities. Front. Microbiol. 2018, 9, 605. [Google Scholar] [CrossRef]
- Klančnik, A.; Šimunović, K.; Sterniša, M.; Ramić, D.; Smole Možina, S.; Bucar, F. Anti-Adhesion Activity of Phytochemicals to Prevent Campylobacter jejuni Biofilm Formation on Abiotic Surfaces. Phytochem. Rev. 2021, 20, 55–84. [Google Scholar] [CrossRef]
- Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing Natural Products as Potential Anti-Biofilm Agents. Chin. Med. 2019, 14, 11. [Google Scholar] [CrossRef]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural Anti-Biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, P.; Wang, Y.; Hao, Y. Mechanisms and Control Measures of Mature Biofilm Resistance to Anti-microbial Agents in the Clinical Context. ACS Omega 2020, 5, 22684–22690. [Google Scholar] [CrossRef]
- Yu, L.; Shi, H. Recent Advances in Anti-Adhesion Mechanism of Natural Antimicrobial Agents on Fresh Produce. Curr. Opin. Food Sci. 2021, 42, 8–14. [Google Scholar] [CrossRef]
- Karampoula, F.; Giaouris, E.; Deschamps, J.; Doulgeraki, A.I.; Nychas, G.J.E.; Dubois-Brissonnet, F. Hydrosol of Thymbra capitata Is a Highly Efficient Biocide against Salmonella Enterica Serovar Typhimurium Biofilms. Appl. Environ. Microbiol. 2016, 82, 5309–5319. [Google Scholar] [CrossRef] [PubMed]
- Xylia, P.; Chrysargyris, A.; Botsaris, G.; Tzortzakis, N. Mint and Pomegranate Extracts/Oils as Antibacterial Agents against Escherichia Coli O157:H7 and Listeria Monocytogenes on Shredded Carrots. J. Food Saf. 2018, 38, e12423. [Google Scholar] [CrossRef]
- Ozturk, I.; Tornuk, F.; Caliskan-Aydogan, O.; Durak, M.Z.; Sagdic, O. Decontamination of Iceberg Lettuce by Some Plant Hydrosols. LWT Food Sci. Technol. 2016, 74, 48–54. [Google Scholar] [CrossRef]
- Bezek, K.; Kramberger, K.; Barlič-Maganja, D. Antioxidant and Antimicrobial Properties of Helichrysum Italicum (Roth) G. Don Hydrosol. Antibiotics 2022, 11, 1017. [Google Scholar] [CrossRef]
- Aćimović, M.; Samardžić, N.; Šovljanski, O.; Lončar, B.; Jeremić, J.S.; Lato, P.; Konstantinović, B.; Vasiljević, S. The Potential of Hydrolates for Use in the Production of Alfalfa Micro Sprouts: Sanitizers and Flavour Enhancers. Waste Biomass Valorization 2024, 15, 5899–5917. [Google Scholar] [CrossRef]
- Buccioni, F.; Purgatorio, C.; Maggio, F.; Garzoli, S.; Rossi, C.; Valbonetti, L.; Paparella, A.; Serio, A. Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria Monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study. Microorganisms 2022, 10, 920. [Google Scholar] [CrossRef]
- Purgatorio, C.; Buccioni, F.; Maggio, F.; Rossi, C.; Torresi, M.; Pomilio, F.; Paparella, A.; Serio, A. Thymbra capitata L. Hydrolate as a Washing Solution for Controlling Listeria Monocytogenes and Spoilage Microorganisms on Rocket Salad. Food Control 2024, 159, 110285. [Google Scholar] [CrossRef]
- Battistini, R.; Masotti, C.; Bianchi, D.M.; Decastelli, L.; Garcia-Vozmediano, A.; Maurella, C.; Fauconnier, M.-L.; Paparella, A.; Serracca, L. In Vivo Evaluation of the Potential of Thyme and Lemon Hydrolates as Processing Aids to Reduce Norovirus Concentration during Oyster Depuration. Foods 2023, 12, 3976. [Google Scholar] [CrossRef] [PubMed]
- Kakoei, H.; Mortazavian, A.M.; Mofid, V.; Gharibzahedi, S.M.T.; Hosseini, H. Single and Combined Hydrodistillation Techniques of Microwave and Ultrasound for Extracting Bio-Functional Hydrosols from Iranian Eryngium caucasicum Trautv. Chem. Pap. 2022, 77, 533–547. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Özcan, M.M.; Uslu, N.; Karrar, E. The Effect of Hydrosol Types on Phytochemical Properties, Phenolic Compounds, Fatty Acid Profiles and Sensory Properties of ‘Ayvalık’ Olive Fruits Fermented in Few Spice Hydrosols. Int. J. Food Sci. Technol. 2024, 59, 3804–3812. [Google Scholar] [CrossRef]
- Grassino, A.N.; Jerković, I.; Pedisić, S.; Dent, M. Hydrodistillation Fractions of Coffee (Green and Roasted) and Coffee By-Product (Silver Skin and Spent Grounds) as a Source of Bioactive Compounds. Sustain. Chem. Pharm. 2024, 39, 101592. [Google Scholar] [CrossRef]
- Lamine, M.; Hamdi, Z.; Zemni, H.; Rahali, F.Z.; Melki, I.; Mliki, A.; Gargouri, M. From Residue to Resource: The Recovery of High-Added Values Compounds through an Integral Green Valorization of Citrus Residual Biomass. Sustain. Chem. Pharm. 2024, 37, 101379. [Google Scholar] [CrossRef]
- Giannakourou, M.C.; Tsironi, T.; Thanou, I.; Tsagri, A.M.; Katsavou, E.; Lougovois, V.; Kyrana, V.; Kasapidis, G.; Sinanoglou, V.J. Shelf-Life Extension and Improvement of the Nutritional Value of Fish Fillets through Osmotic Treatment Based on the Sustainable Use of Rosa Damascena Distillation By-Products. Foods 2019, 8, 421. [Google Scholar] [CrossRef]
- Sikora, M.; Złotek, U.; Kordowska-Wiater, M.; Świeca, M. Spicy Herb Extracts as a Potential Improver of the Antioxidant Properties and Inhibitor of Enzymatic Browning and Endogenous Microbiota Growth in Stored Mung Bean Sprouts. Antioxidants 2021, 10, 425. [Google Scholar] [CrossRef]
- Yu, B.; Wu, K.; Duan, X.; Zhang, T.; He, D.; Chai, X. Composition Analysis and Tyrosinase Inhibitory Activity of Cinnamomum cassia Presl Leaf Hydrosol and Cymbopogon citratus (DC.) Stapf Leaf Hydrosol. J. Food Process. Preserv. 2022, 46, e17058. [Google Scholar] [CrossRef]
- Lante, A.; Tinello, F. Citrus Hydrosols as Useful By-Products for Tyrosinase Inhibition. Innov. Food Sci. Emerg. Technol. 2015, 27, 154–159. [Google Scholar] [CrossRef]
- Xiao, Y.; He, J.; Zeng, J.; Yuan, X.; Zhang, Z.; Wang, B. Application of Citronella and Rose Hydrosols Reduced Enzymatic Browning of Fresh-Cut Taro. J. Food Biochem. 2020, 44, e13283. [Google Scholar] [CrossRef] [PubMed]
- Törnük, F.; Dertli, E. Decontamination of Escherichia ColiO157: H7 and Staphylococcus Aureus from Fresh-Cut Parsley with Natural Plant Hydrosols. J. Food Process Preserv. 2015, 39, 1587–1594. [Google Scholar] [CrossRef]
- Di Vito, M.; Bellardi, M.G.; Colaizzi, P.; Ruggiero, D.; Mazzuca, C.; Micheli, L.; Sotgiu, S.; Iannuccelli, S.; Michelozzi, M.; Mondello, F.; et al. Hydrolates and Gellan: An Eco-Innovative Synergy for Safe Cleaning of Paper Artworks. Stud. Conserv. 2018, 63, 13–23. [Google Scholar] [CrossRef]
- Xylia, P.; Clark, A.; Chrysargyris, A.; Romanazzi, G.; Tzortzakis, N. Quality and Safety Attributes on Shredded Carrots by Using Origanum Majorana and Ascorbic Acid. Postharvest Biol. Technol. 2019, 155, 120–129. [Google Scholar] [CrossRef]
- Irkin, R.; Carikci, S.; Akalin, S.; Batu, Z. Decontamination Effects of Lemon Peel and Mint Leaf Extracts on Salads. J. Food Nutr. Res. 2021, 60, 146–152. [Google Scholar]
- Rossi, C.; Maggio, F.; Chaves-López, C.; Valbonetti, L.; Berrettoni, M.; Paparella, A.; Serio, A. Effectiveness of Selected Essential Oils and One Hydrolate to Prevent and Remove Listeria Monocytogenes Biofilms on Polystyrene and Stainless Steel Food-Contact Surfaces. J. Appl. Microbiol. 2021, 132, 1866–1876. [Google Scholar] [CrossRef]
- Cozzi, L.; Vicenza, T.; Battistini, R.; Masotti, C.; Suffredini, E.; Di Pasquale, S.; Fauconnier, M.L.; Ercolini, C.; Serracca, L. Effects of Essential Oils and Hydrolates on the Infectivity of Murine Norovirus. Viruses 2023, 15, 682. [Google Scholar] [CrossRef]
- Kumar, R.; Atanu, J.; Satish, P.; Ankit, D. Suitability of Type of Herb and Its Form as Flavoring in Herbal Ice Cream. Int. J. Chem. Stud. 2018, 6, 1562–1567. [Google Scholar]
- Petrova, I.; Petkova, N.; Slavchev, A.; Petrova, T. Structural Effects of Selected Hydrocolloids on Ca (II)-Alginate Beads Containing Hydrosol from Rosa Damascena Mill. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 1031. [Google Scholar] [CrossRef]
- Rodrigues, L.; Coelho, E.; Madeira, R.; Teixeira, P.; Henriques, I.; Coimbra, M.A. Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction. Molecules 2022, 27, 2493. [Google Scholar] [CrossRef]
- Tanhaş, E.; Martin, E.; Korucu, E.N.; Dirmenci, T. Effect of Aqueous Extract, Hydrosol, and Essential Oil Forms of Some Endemic origanum L. (Lamiaceae) Taxa on Polyphenol Oxidase Activity in Fresh-Cut Mushroom Samples. J. Food Process. Preserv. 2020, 44, e14726. [Google Scholar] [CrossRef]
- Saha, A.; Basak, B.B. Scope of Value Addition and Utilization of Residual Biomass from Medicinal and Aromatic Plants. Ind. Crops Prod. 2020, 145, 111979. [Google Scholar] [CrossRef]
- Petrakis, E.A.; Kimbaris, A.C.; Lykouressis, D.P.; Polissiou, M.G.; Perdikis, D.C. Hydrosols Evaluation in Pest Control: Insecticidal and Settling Inhibition Potential against Myzus Persicae (Sulzer). J. Appl. Entomol. 2015, 139, 260–267. [Google Scholar] [CrossRef]
- Sharma, A.D.; Kaur, I. By-Product Hydrosol of Eucalyptus Globulus Essential Oil Distillation as Source of Botanical Insecticides: Wealth from Waste. Not. Sci. Biol. 2021, 13, 10854. [Google Scholar] [CrossRef]
- Dermane, A.; Eloh, K.; Simalou, O.; Assiki, B. A Comparative Study on the Antioxidant and Insecticidal Activities of Eucalyptus Camaldulensis Essential Oil and Hydrosol. Int. J. Pharm. Chem. 2024, 10, 10–17. [Google Scholar] [CrossRef]
- Ntalli, N.; Bratidou Parlapani, A.; Tzani, K.; Samara, M.; Boutsis, G.; Dimou, M.; Menkissoglu-Spiroudi, U.; Monokrousos, N. Thymus citriodorus (Schreb) Botanical Products as Ecofriendly Nematicides with Bio-Fertilizing Properties. Plants 2020, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Pardavella, I.; Daferera, D.; Tselios, T.; Skiada, P.; Giannakou, I. The Use of Essential Oil and Hydrosol Extracted from Cuminum cyminum Seeds for the Control of Meloidogyne incognita and Meloidogyne javanica. Plants 2021, 10, 46. [Google Scholar] [CrossRef]
- Pardavella, I.; Nasiou, E.; Daferera, D.; Trigas, P.; Giannakou, I. The Use of Essential Oil and Hydrosol Extracted from Satureja hellenica for the Control of Meloidogyne incognita and M. javanica. Plants 2020, 9, 856. [Google Scholar] [CrossRef]
- Galisteo, A.; González-Coloma, A.; Castillo, P.; Andrés, M.F. Valorization of the Hydrolate Byproduct from the Industrial Extraction of Purple Alium sativum Essential Oil as a Source of Nematicidal Products. Life 2022, 12, 905. [Google Scholar] [CrossRef]
- Rosińska, A. Evaluation of the Use of Oregano and Coconut Hydrolates to Improve Onion Seed Quality. Agronomy 2022, 12, 2478. [Google Scholar] [CrossRef]
- Mravlje, J.; Kopač, E.; Kosovel, H.; Leskošek, J.; Regvar, M. Potential of Rosemary Hydrosol for Effective Growth Inhibition of Fungi Isolated from Buckwheat Grains. Acta Biol. Slov. 2022, 65, 70–79. [Google Scholar] [CrossRef]
- Taglienti, A.; Donati, L.; Ferretti, L.; Tomassoli, L.; Sapienza, F.; Sabatino, M.; Di Massimo, G.; Fiorentino, S.; Vecchiarelli, V.; Nota, P.; et al. In Vivo Antiphytoviral Activity of Essential Oils and Hydrosols From Origanum vulgare, Thymus Vulgaris, and Rosmarinus officinalis to Control Zucchini Yellow Mosaic Virus and Tomato Leaf Curl New Delhi Virus in Cucurbita pepo L. Front. Microbiol. 2022, 13, 840893. [Google Scholar] [CrossRef] [PubMed]
- Taglienti, A.; Donati, L.; Dragone, I.; Ferretti, L.; Gentili, A.; Araniti, F.; Sapienza, F.; Astolfi, R.; Fiorentino, S.; Vecchiarelli, V.; et al. In Vivo Antiphytoviral and Aphid Repellency Activity of Essential Oils and Hydrosols from Mentha suaveolens and Foeniculum vulgare to Control Zucchini Yellow Mosaic Virus and Its Vector Aphis gossypii. Plants 2023, 12, 1078. [Google Scholar] [CrossRef]
- Konstantinović, B.; Popov, M.; Samardžić, N.; Aćimović, M.; Elez, J.Š.; Stojanović, T.; Crnković, M.; Rajković, M. The Effect of Thymus Vulgaris L. Hydrolate Solutions on the Seed Germination, Seedling Length, and Oxidative Stress of Some Cultivated and Weed Species. Plants 2022, 11, 1782. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, C.; Serrano-Pérez, P.; Rodríguez-Molina, M. del C. Chemical Composition, Antifungal and Phytotoxic Activities of Cistus ladanifer L. Essential Oil and Hydrolate. Biocatal. Agric. Biotechnol. 2022, 45, 102527. [Google Scholar] [CrossRef]
- Lazarević, J.; Aćimović, M.; Pezo, L.; Lončar, B.; Konstantinović, B.; Popov, M.; Šovljanski, O.; Travičić, V.; Sikora, V.; Vujisić, L. Chemical Composition and In Vitro Biological Activity of Angelica Root and Hop Strobile Essential Oils and Hydrolates. Waste Biomass Valorization 2024, 15, 867–883. [Google Scholar] [CrossRef]
- Zekri, N.; Handaq, N.; El Caidi, A.; Zair, T.; Alaoui El Belghiti, M. Insecticidal Effect of Mentha pulegium L. and Mentha suaveolens Ehrh. Hydrosols against a Pest of Citrus, Toxoptera Aurantii (Aphididae). Res. Chem. Intermed. 2016, 42, 1639–1649. [Google Scholar] [CrossRef]
- Tabet Zatla, A.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Costa, J.; Muselli, A. Antifungal Activities of Essential Oils and Hydrosol Extracts of Daucus Carota Subsp. Sativus for the Control of Fungal Pathogens, in Particular Gray Rot of Strawberry during Storage. J. Essent. Oil Res. 2017, 29, 391–399. [Google Scholar] [CrossRef]
- Julio, L.F.; González-Coloma, A.; Burillo, J.; Diaz, C.E.; Andrés, M.F. Nematicidal Activity of the Hydrolate Byproduct from the Semi Industrial Vapor Pressure Extraction of Domesticated Artemisia absinthium against Meloidogyne javanica. Crop Prot. 2017, 94, 33–37. [Google Scholar] [CrossRef]
- Zatla, A.T.; Mami, I.; Dib, M.E.A.; Sifi, M.E.A. Efficacy of Essential Oil and Hydrosol Extract of Marrubium vulgare on Fungi Responsible for Apples Rot. Antiinfect. Agents 2019, 18, 285–293. [Google Scholar] [CrossRef]
- Gaspar-Pintiliescu, A.; Mihai, E.; Stanciuc, A.-M.; Anton, R.E.; Popescu, A.F.; Craciunescu, O. Polyphenolic Content, Antioxidant and Antimicrobial Activity of Hydrosols from Some Aromatic Lamiaceae Plants. Proceedings 2020, 57, 21. [Google Scholar] [CrossRef]
- Brito, C.; Hansen, H.; Espinoza, L.; Faúndez, M.; Olea, A.F.; Pino, S.; Díaz, K. Assessing the Control of Postharvest Gray Mold Disease on Tomato Fruit Using Mixtures of Essential Oils and Their Respective Hydrolates. Plants 2021, 10, 1719. [Google Scholar] [CrossRef]
- Yergin Özkan, R.; Tunçtürk, M. Effect of Essential Oils and Hydrosols from Some Selected Lamiaceae Species on Redroot Pigweed (Amaranthus retroflexus L.). Rom. Biotechnol. Lett. 2021, 26, 2471–2475. [Google Scholar] [CrossRef]
- Proto, M.R.; Biondi, E.; Baldo, D.; Levoni, M.; Filippini, G.; Modesto, M.; Di Vito, M.; Bugli, F.; Ratti, C.; Minardi, P.; et al. Essential Oils and Hydrolates: Potential Tools for Defense against Bacterial Plant Pathogens. Microorganisms 2022, 10, 702. [Google Scholar] [CrossRef]
- Gaspar-Pintiliescu, A.; Mihai, E.; Ciucan, T.; Popescu, A.F.; Luntraru, C.; Tomescu, J.; Craciunescu, O. An-tioxidant and Acetylcholinesterase Inhibition Capacity of Hyrosols from Lamiaceae Plants for Biopesticide Use: Role of Phenolics. Int. J. Food Prop. 2022, 25, 996–1008. [Google Scholar] [CrossRef]
- Finetti, L.; Civolani, S.; Mirandola, D.; Benetti, L.; Francati, S.; Albanese, F.; Menicucci, F.; Michelozzi, M.; Bellardi, M.G.; Dindo, M.L.; et al. Monarda Didyma Hydrolate Affects the Survival and the Be-haviour of Drosophila suzukii. Insects 2022, 13, 280. [Google Scholar] [CrossRef] [PubMed]
- Nazlić, M.; Kremer, D.; Grubešić, R.J.; Soldo, B.; Vuko, E.; Stabentheiner, E.; Ballian, D.; Bogunić, F.; Dunkić, V. Endemic Veronica saturejoides Vis. ssp. Saturejoides–Chemical Composition and Antioxidant Activity of Free Volatile Compounds. Plants 2020, 9, 1646. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, Ü.; Özmen, Ö.; Özer, M. Wound Healing, Anti-Analgesic, and Antioxidant Activity of Nigella Sativa Linn., Essential Based Topical Formulations in Rat Model Experimental Skin Defects. J. Essent. Oil-Bear. Plants 2023, 26, 45–60. [Google Scholar] [CrossRef]
- Xin, Z.; Yang, W.; Duan, Y.; Wang, W.; Niu, L.; Sun, D.; Zhang, Y. Bioactive Components and Antibacterial Activities of Hydrolate Extracts by Optimization Conditions from Paeonia Ostii T. Hong & J. X. Zhang. Ind. Crops Prod. 2022, 188, 115737. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Rolo, J.; Gaspar, C.; Ramos, L.; Cavaleiro, C.; Salgueiro, L.; Palmeira-de-Oliveira, R.; Teixeira, J.P.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A. Thymus mastichina (L.) L. and Cistus ladanifer L. for Skin Application: Chemical Characterization and in Vitro Bioactivity Assessment. J. Ethnopharmacol. 2022, 302, 115830. [Google Scholar] [CrossRef]
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Dimitrova, L.; Dobreva, A.; Angelova, T.; Vilhelmova-Ilieva, N.; et al. Rose Flowers—A Delicate Perfume or a Natural Healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef]
- Mutluay Yayla, E.; Izgu, N.; Ozdemir, L.; Aslan Erdem, S.; Kartal, M. Sage Tea-Thyme-Peppermint Hydrosol Oral Rinse Reduces Chemotherapy-Induced Oral Mucositis: A Randomized Controlled Pilot Study. Complement. Ther. Med. 2016, 27, 58–64. [Google Scholar] [CrossRef]
- Demirbolat, I.; Ekinci, C.; Nuhoǧlu, F.; Kartal, M.; Yildiz, P.; Geçer, M.Ö. Effects of Orally Consumed Rosa Damascena Mill. Hydrosol on Hematology, Clinical Chemistry, Lens Enzymatic Activity, and Lens Pathology in Streptozotocin-Induced Diabetic Rats. Molecules 2019, 24, 4069. [Google Scholar] [CrossRef] [PubMed]
- Hussein Mohamed Gameil, A.; Zuhanis Has-Yun Hashim, Y.; Aimi Aliah Zainurin, N.; Mohd Salleh, H.; Syed Abdullah, N. Anticancer Potential and Chemical Profile of Agarwood Hydrosol. Malays. J. Fundam. Appl. Sci. 2019, 15, 761–766. [Google Scholar]
- Lei, G.; Gao, G.; Zhou, M.; Guo, J.; Chen, Y. Water-Soluble Essential Oil Components of Flowers of Paeonia × suffruticosa Cultivars and in Silico Analysis with Antidepressant Targets. Nat. Prod. Res. 2023, 38, 1776–1779. [Google Scholar] [CrossRef]
- De Santis, D.; Carbone, K.; Garzoli, S.; Masci, V.L.; Turchetti, G. Bioactivity and Chemical Profile of Rubus idaeus L. Leaves Steam-Distillation Extract. Foods 2022, 11, 1455. [Google Scholar] [CrossRef] [PubMed]
- Betyna, M.; Zieliński, E.; Zieliński, M.; Motylewski, B.; Skalski, D.; Brzoskowska, K. Phytotherapy—History and Modern Use, Examples of Application in Treatment and Everyday Products. Zenodo 2020, 7, 78–84. [Google Scholar] [CrossRef]
- Prusinowska, R.; Śmigielski, K.; Stobiecka, A.; Kunicka-Styczyńska, A. Hydrolates from Lavender (Lavandula angustifolia)—Their Chemical Composition as Well as Aromatic, Antimicrobial and Antioxidant Properties. Nat. Prod. Res. 2016, 30, 386–393. [Google Scholar] [CrossRef]
- Kunicka-Styczyńska, A.; Śmigielski, K.; Prusinowska, R.; Rajkowska, K.; Kuśmider, B.; Sikora, M. Preservative Activity of Lavender Hydrosols in Moisturizing Body Gels. Lett. Appl. Microbiol. 2015, 60, 27–32. [Google Scholar] [CrossRef]
- Valente, J.; Palmeira-de-Oliveira, R.; Guiomar, L.; Vaz, C.; Rolo, J.; Gaspar, C.; Oliveira, A.S.; Caramelo, D.; Breitenfeld, L.; Gonçalves, J.C.; et al. Humulus Lupulus Aqueous Extract and Hydrolate as a Potential Ingredient for Cosmetics: Chemical Characterization and in Vitro Antimicrobial, Cytotoxicity, Antioxidant, and Anti-Inflammatory Assessment. Fitoterapia 2024, 175, 105861. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, Z.; Yu, C.; Feng, T.; Yao, L.; Song, S.; Sun, M.; Liu, Q.; Wang, H. Impact of Using High-Pressure Homogenization on the Chemical Profile, Quality Stability and Bioactivity of Hydrosol Obtain from Rose Flower. Food Bioprod. Process. 2024, 144, 22–31. [Google Scholar] [CrossRef]
- Smiljanić, K.; Prodić, I.; Trifunovic, S.; Krstić Ristivojević, M.; Aćimović, M.; Stanković Jeremić, J.; Lončar, B.; Tešević, V. Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts. Antioxidants 2023, 12, 1988. [Google Scholar] [CrossRef]
- Tavares, C.S.; Martins, A.; Faleiro, M.L.; Miguel, M.G.; Duarte, L.C.; Gameiro, J.A.; Roseiro, L.B.; Figueiredo, A.C. Bioproducts from Forest Biomass: Essential Oils and Hydrolates from Wastes of Cupressus Lusitanica Mill. and Cistus ladanifer L. Ind. Crops Prod. 2020, 144, 112034. [Google Scholar] [CrossRef]
- Panwar, D.; Saini, A.; Panesar, P.S.; Chopra, H.K. Unraveling the Scientific Perspectives of Citrus By-Products Utilization: Progress towards Circular Economy. Trends Food Sci. Technol. 2021, 111, 549–562. [Google Scholar] [CrossRef]
- Shafie, M.H.; Kamal, M.L.; Abdul Razak, N.A.; Hasan, S.; Uyup, N.H.; Abdul Rashid, N.F.; Zafarina, Z. Antioxidant and Antimicrobial Activity of Plant Hydrosol and Its Potential Application in Cosmeceutical Products. J. Nat. Pharm. Prod. 2022, 17, e124018. [Google Scholar] [CrossRef]
- Di Vito, M.; Bellardi, M.G.; Mondello, F.; Modesto, M.; Michelozzi, M.; Bugli, F.; Sanguinetti, M.; Sclocchi, M.C.; Sebastiani, M.L.; Biffi, S.; et al. Monarda Citriodora Hydrolate vs Essential Oil Comparison in Several Anti-Microbial Applications. Ind. Crops Prod. 2019, 128, 206–212. [Google Scholar] [CrossRef]
- Karami, A.; Kavoosi, G.; Maggi, F. The Emulsion Made with Essential Oil and Aromatic Water from Oliveria Decumbens Protects Murine Macrophages from LPS-Induced Oxidation and Exerts Relevant Radical Scavenging Activities. Biocatal. Agric. Biotechnol. 2019, 17, 538–544. [Google Scholar] [CrossRef]
- Garzoli, S.; Petralito, S.; Ovidi, E.; Turchetti, G.; Laghezza Masci, V.; Tiezzi, A.; Trilli, J.; Cesa, S.; Casadei, M.A.; Giacomello, P.; et al. Lavandula x intermedia Essential Oil and Hydrolate: Evaluation of Chemical Composition and Antibacterial Activity before and after Formulation in Nanoemulsion. Ind. Crops Prod. 2020, 145, 112068. [Google Scholar] [CrossRef]
- Li, X.; Shen, D.; Zang, Q.; Qiu, Y.; Yang, X. Chemical Components and Antimicrobial Activities of Tea Tree Hydrosol and Their Correlation with Tea Tree Oil. Nat. Prod. Commun. 2021, 16, 1934578X211038390. [Google Scholar] [CrossRef]
- Vuko, E.; Dunkić, V.; Ruščić, M.; Nazlić, M.; Mandić, N.; Soldo, B.; Šprung, M.; Fredotović, Ž. Chemical Composition and New Biological Activities of Essential Oil and Hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) h. Lindb. Plants 2021, 10, 1014. [Google Scholar] [CrossRef]
- Ferraz, C.A.; Sousa, A.C.A.; Caramelo, D.; Delgado, F.; de Oliveira, A.P.; Pastorinho, M.R. Chemical Profile and Eco-Safety Evaluation of Essential Oils and Hydrolates from Cistus ladanifer, Helichrysum italicum, Ocimum basilicum and Thymbra capitata. Ind. Crops Prod. 2022, 175, 114232. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Rolo, J.; Gaspar, C.; Cavaleiro, C.; Salgueiro, L.; Palmeira-de-Oliveira, R.; Ferraz, C.; Coelho, S.; Pastorinho, M.R.; Sousa, A.C.; et al. Chemical Characterization and Bioactive Potential of Thymus × citriodorus (Pers.) Schreb. Preparations for Anti-Acne Applications: Antimicrobial, Anti-Biofilm, Anti-Inflammatory and Safety Profiles. J. Ethnopharmacol. 2022, 287, 114935. [Google Scholar] [CrossRef] [PubMed]
- Politi, M.; Ferrante, C.; Menghini, L.; Angelini, P.; Flores, G.A.; Muscatello, B.; Braca, A.; De Leo, M. Hy-drosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. Plants 2022, 11, 349. [Google Scholar] [CrossRef]
- Ilieva, Y.; Dimitrova, L.; Georgieva, A.; Vilhelmova-Ilieva, N.; Zaharieva, M.M.; Kokanova-Nedialkova, Z.; Dobreva, A.; Nedialkov, P.; Kussovski, V.; Kroumov, A.D.; et al. In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses. Plants 2022, 11, 1073. [Google Scholar] [CrossRef]
- Wang, C.-H.; Taso, N.-W.; Chen, C.-J.; Chang, H.-Y.; Wang, S.-Y. Composition Characterization of Cin-namomum Osmophloeum Kanehira Hydrosol and Its Enhanced Effects on Erectile Function. Plants 2024, 13, 1518. [Google Scholar] [CrossRef]
- Serra, D.; Cruciani, S.; Garroni, G.; Sarais, G.; Kavak, F.F.; Satta, R.; Montesu, M.A.; Floris, M.; Ventura, C.; Maioli, M. Effect of Helichrysum Italicum in Promoting Collagen Deposition and Skin Regeneration in a New Dynamic Model of Skin Wound Healing. Int. J. Mol. Sci. 2024, 25, 4736. [Google Scholar] [CrossRef] [PubMed]
- Guesmi, F.; Ben Hmed, M.; Prasad, S.; Tyagi, A.K.; Landoulsi, A. In Vivo Pathogenesis of Colon Carcinoma and Its Suppression by Hydrophilic Fractions of Clematis flammula via Activation of TRAIL Death Machinery (DRs) Expression. Biomed. Pharmacother. 2019, 109, 2182–2191. [Google Scholar] [CrossRef] [PubMed]
- Şimşek Sezer, E.N.; Bozkurt, M.; Tulukcu, E.; Uysal, T. Comparative cytotoxic effects of the hydrosols of some ethnobotanic plants. Curr. Perspect. Med. Aromat. Plants 2020, 3, 97–103. [Google Scholar] [CrossRef]
- Vuko, E.; Dunkić, V.; Maravić, A.; Ruščić, M.; Nazlić, M.; Radan, M.; Ljubenkov, I.; Soldo, B.; Fredotović, Ž. Not Only a Weed Plant—Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter. Plants 2021, 10, 1837. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.Y.; Jung, J.Y.; Lee, D.H.; Yang, J.-K. Anti-Allergic and Anti-Inflammatory Effects of Hydrosol Extracted from Zanthoxylum Schinifolium Branch. Bioresources 2021, 16, 5721–5732. [Google Scholar] [CrossRef]
- Zekri, N.; Elazzouzi, H.; Drioiche, A.; Zair, T.; El Belghiti, M.A. Antibacterial Activity of Essential Oils and Hydrosols Extracted from Some Moroccan mentha Species (L.). J. Med. Pharm. Allied Sci. 2022, 11, 4460–4464. [Google Scholar] [CrossRef]
- Boualam, K.; Ibork, H.; Lahboub, Z.; Sobeh, M.; Taghzouti, K. Mentha rotundifolia (L.) Huds. and Salvia officinalis L. Hydrosols Mitigate Aging Related Comorbidities in Rats. Front. Aging Neurosci. 2024, 16, 1365086. [Google Scholar] [CrossRef]
- Gateva, S.; Jovtchev, G.; Angelova, T.; Gerasimova, T.; Dobreva, A.; Mileva, M. Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria. Pharmaceuticals 2024, 17, 657. [Google Scholar] [CrossRef]
- Wawrzynczak, K.; Sadowska, B.; Więckowska-Szakiel, M.; Kalemba, D. Composition and Antimicrobial Ac-tivity of Myrica gale L. Leaf and Flower Essential Oils and Hydrolates. Rec. Nat. Prod. 2021, 15, 35–45. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Tuchowska, A.; Janda-Milczarek, K. Plant Hydrolates—Antioxidant Properties, Chemical Composition and Potential Applications. Biomed. Pharmacother. 2021, 142, 112033. [Google Scholar] [CrossRef]
- Pavlović, D.; Grigorov, M.; Martinović, M.; Tasić-Kostov, M. Hydrolates: From waste products to potential cosmetic actives. Arh. Farm. 2021, 71, 86–89. [Google Scholar]
- Milenković, A.; Stanojević, J.; Stanojević, L. Comparative analysis of chemical composition and antioxidant activity of essential oil and hydrolate from black pepper fruit (Piper nigrum L.). Maced. J. Chem. Chem. Eng. 2022, 41, 209–220. [Google Scholar] [CrossRef]
- Bairamis, A.; Sotiropoulou, N.S.D.; Tsadila, C.; Tarantilis, P.; Mossialos, D. Chemical Composition and An-timicrobial Activity of Essential Oils and Hydrosols from Oregano, Sage and Pennyroyal against Oral Pathogens. Appl. Sci. 2024, 14, 3238. [Google Scholar] [CrossRef]
- Di Vito, M.; Bugli, F.; Cacaci, M.; Talamonti, D.; Lombardini, G.; Garzoli, S. Phytochemical Analysis and Evaluation of Antibacterial, Antifungal, Antioxidant and Anti-Inflammatory Potential of Juniperus phoenicea subsp. Phoenicea L. Essential Oil and Hydrolate from Central Italy. J. Essent. Oil Res. 2024, 36, 49–59. [Google Scholar] [CrossRef]
- Ferraz, C.A.; Pastorinho, M.R.; Palmeira-de-Oliveira, A.; Sousa, A.C.A. Ecotoxicity of Plant Extracts and Essential Oils: A Review. Environ. Pollut. 2022, 292, 118319. [Google Scholar] [CrossRef] [PubMed]
- da Silva, H.N.P.; Sousa, E.M.d.O.; Maia, J.L.d.S.; Pinheiro, M.T.L.; Lameirão, S.V.d.O.C.; Mourão, R.H.V.; Maia, J.G.S.; Baldisserotto, B.; da Silva, L.V.F. Lippia alba (Verbenaceae) Hydrolate as Sedative of Tambaqui (Colossoma macropomum) Juveniles in Simulated Transport Conditions. Aquac. Res. 2018, 49, 128–134. [Google Scholar] [CrossRef]
- dos Santos Maia, J.L.; de Oliveira Sousa, E.M.; Pereira da Silva, H.N.; Lima Pinheiro, M.T.; Mourão, R.H.V.; Soares Maia, J.G.; de Oliveira Coelho Lameirão, S.V.; Baldisserotto, B.; Vargas Flores da Silva, L. Hydrolate Toxicity of Lippia alba (Mill.) N. E. Brown (Verbenaceae) in Juvenile Tambaqui (Colossoma macropomum) and Its Potential Anaesthetic Properties. Aquaculture 2019, 503, 367–372. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Val, J.; Ballestero, D.; Navarro, E.; Sánchez, E.; Mainar, A.M. Impact of Artemisia absinthium Hydrolate Extracts with Nematicidal Activity on Non-Target Soil Organisms of Different Trophic Levels. Eco-Toxicol. Environ. Saf. 2019, 180, 565–574. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Val, J.; Ballestero, D.; Navarro, E.; Sánchez, E.; González-Coloma, A.; Mainar, A.M. Eco-toxicity of a New Biopesticide Produced by Lavandula Luisieri on Non-Target Soil Organisms from Different Trophic Levels. Sci. Total Environ. 2019, 671, 83–93. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Langa, E.; Val, J.; Mainar, A.M.; Ballestero, D. Impact of Citronellol on River and Soil En-vironments Using Non-Target Model Organisms and Natural Populations. J. Environ. Manag. 2021, 287, 112303. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Gan, C.; Terrado, E.; Sanz, M.A.; Ballestero, D.; Langa, E. Antibiotic Properties of Satureja montana L. Hydrolate in Bacteria and Fungus of Clinical Interest and Its Impact in Non-Target Environmental Microorganisms. Sci. Rep. 2022, 12, 18460. [Google Scholar] [CrossRef] [PubMed]
- Pino-Otín, M.R.; Navarro, J.; Val, J.; Roig, F.; Mainar, A.M.; Ballestero, D. Spanish Satureja montana L. Hydrolate: Ecotoxicological Study in Soil and Water Non-Target Organisms. Ind. Crops Prod. 2022, 178, 114553. [Google Scholar] [CrossRef]
Plant Scientific Name | Methodology | LLE Solvent | Major Compounds (≥10%) | References |
---|---|---|---|---|
Ocimum basilicum L. | Extraction procedure: HD; Parameters: 300/1.2 (g/L) for the fresh plant, 40/1.2 (g/L) for the dry plant, and 4 h distillation. | n-pentane | Fresh plant: methyleugenol (44.9%), linalool (10.3%) and eugenol (12.5%); dry plant: methyleugenol (45.8%). | [73] |
Rosmarinus officinalis L. | Extraction procedure: HD; Parameters: 300/600 (g/g), distillation time not mentioned. | n-hexane | Camphor (24.9%), borneol (20.4%) and eucalyptol (19.8%). | [74] |
Eucalyptus alba, Eucalyptus camaldulensis and Eucalyptus tereticornis | Extraction procedure: SD (Clevenger-type apparatus); Parameters: 100/1.5 (g/L), 2 and 4 h distillation. | n-hexane | E. alba: 1.8-cineole (39.1%), trans-pinocarveol (19.3%); E. camaldulensis: 1.8-cineole (52.6%); E. tereticornis: 1.8-cineole (30.7%). | [40] |
Citrus sinensis, Citrus reticulata, Citrus maxima and Citrus aurantifolia | Extraction procedure: SD (Clevenger-type apparatus); Parameters: 100/1.5 (g/L), 90 min distillation. | n-hexane | C. sinensis: linalool (34.8%); C. reticulata: linalool (17.5%), α-terpineol (10.1%), trans-carveol (12.2%), citronellol (16.4%); C. maxima: trans-linalooloxide (21.3%), α-terpineol (13.0%), cis-linalool oxide (furanoid) (10.3%); C. aurantifolia: geranial (18.3%), nerol (15.8%), neral (15.3%), geraniol (13.1%), α-terpineol (14.6%). | [75] |
Picea mariana | Extraction procedure: SD and HD (modified aluminium 20 L still); Parameters: HD: 200/15 (g/L); SD: 200 g (with 2 L/h of steam flow), 6 h distillation. | n-hexane | α-terpineol (29.3% SD and 33.5% HD). | [58] |
Mentha spicata, Zataria multiflora, Bunium persunicum and Trachyspermum ammi | Extraction procedure: HD (Clevenger-type apparatus); Parameters: 200 g (volume not mentioned), 4 h distillation. | Petroleum ether | M. spicata: piperitone (38.27%), carvone (22.07%), pulegone (14.75%); Z. multiflora: carvacrol (55.94%), thymol (40.37%); B. persunicum: cuminol (32.48%), cuminic aldehyde (29.35%), γ-terpinen-7-al (19.41%); T. ammi: thymol (90.94%). | [41] |
Lindera umbrellata | Extraction procedure: HD; Parameters: ratio plant/water not mentioned, 2 h distillation. | Not mentioned | Linalool (57.5%). | [76] |
Pinus cembra | Extraction procedures: SD (medium scale copper alembic apparatus); Parameters: 12 kg (30 L of water for steam flow), 1 h distillation. | Hexane | α-terpineol (28–34%). | [77] |
Lavandula x intermedia | Extraction procedure: SD (stainless-steel apparatus); Parameters: 250–300 g (steam flow not mentioned), 1 h distillation. | Ethyl acetate and n-hexane | linalool (35–40%); borneol (10–30%) and terpinen-4-ol (5–10%). | [78] |
Melaleuca alternifolia | Extraction procedure: SD; Parameters: 500 g (steam flow not mentioned), 4 h distillation. | n-hexane | trans-caryophyllene (28.58%), terpinen-4-ol (16.27%), limonene (13.98%), and α-terpineol (10.10%). | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, H.H.S.; Fernandes, I.P.; Amaral, J.S.; Rodrigues, A.E.; Barreiro, M.-F. Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources. Molecules 2024, 29, 4660. https://doi.org/10.3390/molecules29194660
Almeida HHS, Fernandes IP, Amaral JS, Rodrigues AE, Barreiro M-F. Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources. Molecules. 2024; 29(19):4660. https://doi.org/10.3390/molecules29194660
Chicago/Turabian StyleAlmeida, Heloísa H. S., Isabel P. Fernandes, Joana S. Amaral, Alírio E. Rodrigues, and Maria-Filomena Barreiro. 2024. "Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources" Molecules 29, no. 19: 4660. https://doi.org/10.3390/molecules29194660
APA StyleAlmeida, H. H. S., Fernandes, I. P., Amaral, J. S., Rodrigues, A. E., & Barreiro, M. -F. (2024). Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources. Molecules, 29(19), 4660. https://doi.org/10.3390/molecules29194660