Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (674)

Search Parameters:
Keywords = biopesticides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 5210 KiB  
Review
Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation
by Alane Beatriz Vermelho, Jean Vinícius Moreira, Ingrid Teixeira Akamine, Veronica S. Cardoso and Felipe R. P. Mansoldo
Plants 2024, 13(19), 2762; https://doi.org/10.3390/plants13192762 - 1 Oct 2024
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the [...] Read more.
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Graphical abstract

20 pages, 2816 KiB  
Article
Phytotoxic Activity of Sesquiterpene Lactones-Enriched Fractions from Cynara cardunculus L. Leaves on Pre-Emergent and Post-Emergent Weed Species and Putative Mode of Action
by Daniela Rosa, Carlos Rial, Teresa Brás, Rosa M. Varela, Francisco A. Macías and Maria F. Duarte
Plants 2024, 13(19), 2758; https://doi.org/10.3390/plants13192758 - 1 Oct 2024
Abstract
Sesquiterpene lactones (SLs) are compounds that are highly produced in Cynara cardunculus leaves, known for their phytotoxic activity. This study aims to assess SL-enriched fractions’ (cynaropicrin, aguerin B, and grosheimin) phytotoxic potentials and putative modes of action, compared to an initial extract, using [...] Read more.
Sesquiterpene lactones (SLs) are compounds that are highly produced in Cynara cardunculus leaves, known for their phytotoxic activity. This study aims to assess SL-enriched fractions’ (cynaropicrin, aguerin B, and grosheimin) phytotoxic potentials and putative modes of action, compared to an initial extract, using two approaches: first, against a panel of nine weed species in pre-emergence, and then on Portulaca oleracea L.’s post-emergency stage. The SL-enriched fractions demonstrated greater phytotoxic activity when compared with the C. cardunculus leaf initial extract. The SL-enriched fractions had higher activity at root growth inhibition over the panel tested, doubling the activity in five of them at 800 ppm. Regarding the post-emergence bioassay, the SL-enriched fractions had a higher influence on the plants’ growth inhibition (67% at 800 ppm). The SL-effects on the plants’ metabolisms were evidenced. The total chlorophyll content was reduced by 65% at 800 ppm. Oxidative stress induction was observed because of the enhancement in MDA levels at 800 ppm compared to control (52%) and the decrease in SOD-specific activity from 4.20 U/mg protein (400 ppm) to 1.74 U/mg protein (800 ppm). The phytotoxic effects of the SL-enriched fractions suggest that they could be used for a future bioherbicide development. Full article
(This article belongs to the Special Issue Phytochemical and Biological Activity of Plant Extracts)
Show Figures

Figure 1

56 pages, 1879 KiB  
Review
Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources
by Heloísa H. S. Almeida, Isabel P. Fernandes, Joana S. Amaral, Alírio E. Rodrigues and Maria-Filomena Barreiro
Molecules 2024, 29(19), 4660; https://doi.org/10.3390/molecules29194660 - 30 Sep 2024
Viewed by 156
Abstract
The global demand for sustainable and non-toxic alternatives across various industries is driving the exploration of naturally derived solutions. Hydrosols, also known as hydrolates, represent a promising yet underutilised byproduct of the extraction process of essential oils (EOs). These aqueous solutions contain a [...] Read more.
The global demand for sustainable and non-toxic alternatives across various industries is driving the exploration of naturally derived solutions. Hydrosols, also known as hydrolates, represent a promising yet underutilised byproduct of the extraction process of essential oils (EOs). These aqueous solutions contain a complex mixture of EO traces and water-soluble compounds and exhibit significant biological activity. To fully use these new solutions, it is necessary to understand how factors, such as distillation time and plant-to-water ratio, affect their chemical composition and biological activity. Such insights are crucial for the standardisation and quality control of hydrosols. Hydrosols have demonstrated noteworthy properties as natural antimicrobials, capable of preventing biofilm formation, and as antioxidants, mitigating oxidative stress. These characteristics position hydrosols as versatile ingredients for various applications, including biopesticides, preservatives, food additives, anti-browning agents, pharmaceutical antibiotics, cosmetic bioactives, and even anti-tumour agents in medical treatments. Understanding the underlying mechanisms of these activities is also essential for advancing their use. In this context, this review compiles and analyses the current literature on hydrosols’ chemical and biological properties, highlighting their potential applications and envisioning future research directions. These developments are consistent with a circular bio-based economy, where an industrial byproduct derived from biological sources is repurposed for new applications. Full article
(This article belongs to the Special Issue Featured Reviews in Applied Chemistry 2.0)
20 pages, 8830 KiB  
Article
Enhanced Antifungal Efficacy of Validamycin A Co-Administered with Bacillus velezensis TCS001 against Camellia anthracnose
by Zhilei Chen, Hao Cao, Jing Jin, Zhong Li, Shouke Zhang and Jie Chen
Plants 2024, 13(19), 2743; https://doi.org/10.3390/plants13192743 - 30 Sep 2024
Viewed by 219
Abstract
Anthracnose, a fungal disease harming fruit trees and crops, poses a threat to agriculture. Traditional chemical pesticides face issues like environmental pollution and resistance. A strategy combining low-toxicity chemicals with biopesticides is proposed to enhance disease control while reducing chemical use. Our study [...] Read more.
Anthracnose, a fungal disease harming fruit trees and crops, poses a threat to agriculture. Traditional chemical pesticides face issues like environmental pollution and resistance. A strategy combining low-toxicity chemicals with biopesticides is proposed to enhance disease control while reducing chemical use. Our study found that mixing validamycin A (VMA) and Bacillus velezensis TCS001 effectively controlled anthracnose in Camellia oleifera. The combination increased antifungal efficacy by 65.62% over VMA alone and 18.83% over TCS001 alone. It caused pathogen deformities and loss of pathogenicity. Transcriptomic analysis revealed that the mix affected the pathogen’s metabolism and redox processes, particularly impacting cellular membrane functions and inducing apoptosis via glycolysis/gluconeogenesis. In vivo tests showed the treatment activated C. oleifera’s disease resistance, with a 161.72% increase in polyphenol oxidase concentration in treated plants. This research offers insights into VMA and TCS001’s mechanisms against anthracnose, supporting sustainable forestry and national edible oil security. Full article
(This article belongs to the Special Issue Nutrient Management on Soil Microbiome Dynamics and Plant Health)
Show Figures

Figure 1

16 pages, 19206 KiB  
Article
Bioinformatics Analysis of the Panax ginseng Cyclophilin Gene and Its Anti-Phytophthora cactorum Activity
by Yu Zhao, Jiahong Lu, Yuming Wang, Kaiwen Hao, Zhimei Liu, Ge Hui and Tianxia Sun
Plants 2024, 13(19), 2731; https://doi.org/10.3390/plants13192731 - 29 Sep 2024
Viewed by 271
Abstract
In this paper, Panax ginseng cyclophilin (PgCyP) was successfully obtained through a genetic engineering technique. A bioinformatics method was used to analyze the physicochemical properties and structure of PgCyP. The results showed that PgCyP belongs to the cyclophilin gene family. The protein [...] Read more.
In this paper, Panax ginseng cyclophilin (PgCyP) was successfully obtained through a genetic engineering technique. A bioinformatics method was used to analyze the physicochemical properties and structure of PgCyP. The results showed that PgCyP belongs to the cyclophilin gene family. The protein encoded by the PgCyP gene contains the active site of PPIase (R62, F67, and H133) and a binding site for cyclosporine A (W128). The relative molecular weight of PgCyP is 187.11 bp; its theoretical isoelectric point is 7.67, and it encodes 174 amino acids. The promoter region of PgCyP mainly contains the low-temperature environmental stress response (LTR) element, abscisic acid-responsive cis-acting element (ABRE), and light-responsive cis-acting element (G-Box). PgCyP includes a total of nine phosphorylation sites, comprising four serine phosphorylation sites, three threonine phosphorylation sites, and two tyrosine phosphorylation sites. PgCyP was recombined and expressed in vitro, and its recombinant expression was investigated. Furthermore, it was found that the recombinant PgCyP protein could effectively inhibit the germination of Phytophthora cactorum spores and the normal growth of Phytophthora cactorum mycelia in vitro. Further experiments on the roots of susceptible Arabidopsis thaliana showed that the PgCyP protein could improve the resistance of arabidopsis to Phytophthora cactorum. The findings of this study provide a basis for the use of the PgCyP protein as a new type of green biopesticide. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

17 pages, 1343 KiB  
Article
Activity of Common Thyme (Thymus vulgaris L.), Greek Oregano (Origanum vulgare L. ssp. hirtum), and Common Oregano (Origanum vulgare L. ssp. vulgare) Essential Oils against Selected Phytopathogens
by Olga Kosakowska, Zenon Węglarz, Sylwia Styczyńska, Alicja Synowiec, Małgorzata Gniewosz and Katarzyna Bączek
Molecules 2024, 29(19), 4617; https://doi.org/10.3390/molecules29194617 - 29 Sep 2024
Viewed by 248
Abstract
The aim of this study was to determine the activity of common thyme (Thymus vulgare L.), Greek oregano (Origanum vulgare L. ssp. hirtum), and common oregano (Origanum vulgare L. ssp. vulgare) essential oils (EOs) against selected phytopathogenic microorganisms [...] Read more.
The aim of this study was to determine the activity of common thyme (Thymus vulgare L.), Greek oregano (Origanum vulgare L. ssp. hirtum), and common oregano (Origanum vulgare L. ssp. vulgare) essential oils (EOs) against selected phytopathogenic microorganisms in relation to their chemical profile. The EOs were obtained from the herbs of 2-year-old plants cultivated in the organic farming system in a temperate climate in Central Europe. The EOs’ composition was determined by GC/MS and GC/FID. The investigated species were represented by the following three chemotypes: ‘thymol’ for common thyme, ‘carvacrol’ for Greek oregano, and mixed ‘caryophyllene oxide + β-caryophyllene’ for common oregano. The antimicrobial activity of the EOs was assessed based on minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values. The plant pathogenic bacteria Pseudomonas syringae, Xanthomonas hortorum, Erwinia carotovora, and fungi: Fusarium culmorum, Alternaria alternata, Botrytis cinerea, Epicoccum purpurascens, Cladosporium cladosporioides, Phoma strasseri, and Pythium debaryanum were tested. The EOs revealed a stronger inhibitory effect against fungal growth in comparison to bacterial growth (MIC: 0.016–2 µL/mL for fungi and 0.125–4 µL/mL for bacteria). Common thyme and Greek oregano EOs indicated stronger antimicrobial power than common oregano EO. These results were associated with the chemical profile of the analysed EOs. The growth of examined bacteria and fungi strains (in particular, X. hortorum, F. culmorum, and P. debaryanum) were negatively correlated with the content of phenolic monoterpenes and monoterpene hydrocarbons. Among the tested strains, P. strasseri turned out to be the most sensitive (MIC 0.016 µL/mL) and E. carotovora the most resistant (MIC 0.250–4 µL/mL) to all investigated EOs. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

16 pages, 973 KiB  
Article
Nematicidal and Insecticidal Compounds from the Laurel Forest Endophytic Fungus Phyllosticta sp.
by Carmen E. Díaz, María Fe Andrés, Patricia Bolaños and Azucena González-Coloma
Molecules 2024, 29(19), 4568; https://doi.org/10.3390/molecules29194568 - 26 Sep 2024
Viewed by 265
Abstract
The search for natural product-based biopesticides from endophytic fungi is an effective tool to find new solutions. In this study, we studied a pre-selected fungal endophyte, isolate YCC4, from the paleoendemism Persea indica, along with compounds present in the extract and the [...] Read more.
The search for natural product-based biopesticides from endophytic fungi is an effective tool to find new solutions. In this study, we studied a pre-selected fungal endophyte, isolate YCC4, from the paleoendemism Persea indica, along with compounds present in the extract and the identification of the insect antifeedant and nematicidal ones. The endophyte YCC4 was identified as Phyllosticta sp. by molecular analysis. The insect antifeedant activity was tested by choice bioassays against Spodoptera littoralis, Myzus persicae, and Rhopalosiphum padi, and the in vitro and in vivo mortality was tested against the root-knot nematode Meloidogyne javanica. Since the extract was an effective insect antifeedant, a strong nematicidal, and lacked phytotoxicity on tomato plants, a comprehensive chemical study was carried out. Two new metabolites, metguignardic acid (4) and (-)-epi-guignardone I (14), were identified along the known dioxolanones guignardic acid (1), ethyl guignardate (3), guignardianones A (5), C (2), D (7), and E (6), phenguignardic acid methyl ester (8), the meroterpenes guignardone A (9) and B (10), guignarenone B (11) and C (12), (-)-guignardone I (13), and phyllomeroterpenoid B (15). Among these compounds, 1 and 4 were effective antifeedants against S. littoralis and M. persicae, while 2 was only active on the aphid M. persicae. The nematicidal compounds were 4, 7, and 8. This is the first report on the insect antifeedant or nematicidal effects of these dioxolanone-type compounds. Since the insect antifeedant and nematicidal activity of the Phyllosticta sp. extract depend on the presence of dioxolanone components, future fermentation optimizations are needed to promote the biosynthesis of these compounds instead of meroterpenes. Full article
(This article belongs to the Special Issue Natural Products and Analogues with Promising Biological Profiles)
Show Figures

Graphical abstract

37 pages, 4412 KiB  
Review
Traditional Strategies and Cutting-Edge Technologies Used for Plant Disease Management: A Comprehensive Overview
by Hira Akhtar, Muhammad Usman, Rana Binyamin, Akhtar Hameed, Sarmad Frogh Arshad, Hafiz Muhammad Usman Aslam, Imran Ahmad Khan, Manzar Abbas, Haitham E. M. Zaki, Gabrijel Ondrasek and Muhammad Shafiq Shahid
Agronomy 2024, 14(9), 2175; https://doi.org/10.3390/agronomy14092175 - 23 Sep 2024
Viewed by 1018
Abstract
Agriculture plays a fundamental role in ensuring global food security, yet plant diseases remain a significant threat to crop production. Traditional methods to manage plant diseases have been extensively used, but they face significant drawbacks, such as environmental pollution, health risks and pathogen [...] Read more.
Agriculture plays a fundamental role in ensuring global food security, yet plant diseases remain a significant threat to crop production. Traditional methods to manage plant diseases have been extensively used, but they face significant drawbacks, such as environmental pollution, health risks and pathogen resistance. Similarly, biopesticides are eco-friendly, but are limited by their specificity and stability issues. This has led to the exploration of novel biotechnological approaches, such as the development of synthetic proteins, which aim to mitigate these drawbacks by offering more targeted and sustainable solutions. Similarly, recent advances in genome editing techniques—such as meganucleases (MegNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)—are precise approaches in disease management, but are limited by technical challenges and regulatory concerns. In this realm, nanotechnology has emerged as a promising frontier that offers novel solutions for plant disease management. This review examines the role of nanoparticles (NPs), including organic NPs, inorganic NPs, polymeric NPs and carbon NPs, in enhancing disease resistance and improving pesticide delivery, and gives an overview of the current state of nanotechnology in managing plant diseases, including its advantages, practical applications and obstacles that must be overcome to fully harness its potential. By understanding these aspects, we can better appreciate the transformative impact of nanotechnology on modern agriculture and can develop sustainable and effective strategies to mitigate plant diseases, ensuring enhanced agricultural productivity. Full article
Show Figures

Figure 1

15 pages, 2462 KiB  
Article
Sustainable Management of Tetranychus urticae and Trialeurodes vaporariorum on Tomato and Cucumber Plants Using Rhamnolipids and Essential Oil-Based Biocontrol Agents
by Thomas Thomidis and Petros Damos
Insects 2024, 15(9), 720; https://doi.org/10.3390/insects15090720 - 20 Sep 2024
Viewed by 416
Abstract
Rhamnolipids (RLs), biosurfactants produced by Pseudomonas aeruginosa, have gained attention for their potential role in pest management. This study investigated the efficacy of RLs in controlling the two-spotted spider mite (Tetranychus urticae) and the whitefly (Trialeurodes vaporariorum), as [...] Read more.
Rhamnolipids (RLs), biosurfactants produced by Pseudomonas aeruginosa, have gained attention for their potential role in pest management. This study investigated the efficacy of RLs in controlling the two-spotted spider mite (Tetranychus urticae) and the whitefly (Trialeurodes vaporariorum), as well as a novel non-commercial essential oil-based product, Petir Kilat, on cucumber and tomato plants within a controlled greenhouse environment. The RLs were tested at concentrations of 1 mL/L and 2 mL/L, compared to commercial biopesticides including abamectin (ABAMAX) and Beauveria bassiana (NATURALIS). The results indicated that ABAMAX achieved the highest mortality rates for T. urticae and T. vaporariorum, with 100% mortality observed at 7 days. NATURALIS was also highly effective, particularly for whiteflies, though its efficacy declined over time. RLs showed a dose-dependent increase in mortality, with the higher concentration (2 mL/L) yielding more promising results, though not surpassing the commercial products. Petir Kilat, derived from orange essential oils, demonstrated significant control, particularly at higher concentrations, comparable to or exceeding the effectiveness of NATURALIS and ABAMAX in some cases. Statistical analyses revealed significant differences between treatments in most cases (p < 0.05). The findings underscore the potential of RLs and Petir Kilat as components of integrated pest management (IPM) strategies. While RLs are effective, their performance suggests they are best used in combination with other control methods. The study highlights the need for further research to optimize the application of RLs and essential oil-based products to enhance their role in sustainable pest management practices. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

17 pages, 2323 KiB  
Article
Simultaneous Silencing of Gut Nucleases and a Vital Target Gene by Adult dsRNA Feeding Enhances RNAi Efficiency and Mortality in Ceratitis capitata
by Gennaro Volpe, Sarah Maria Mazzucchiello, Noemi Rosati, Francesca Lucibelli, Marianna Varone, Dora Baccaro, Ilaria Mattei, Ilaria Di Lelio, Andrea Becchimanzi, Ennio Giordano, Marco Salvemini, Serena Aceto, Francesco Pennacchio and Giuseppe Saccone
Insects 2024, 15(9), 717; https://doi.org/10.3390/insects15090717 - 19 Sep 2024
Viewed by 782
Abstract
Ceratitis capitata, known as the Mediterranean fruit fly (Medfly), is a major dipteran pest significantly impacting fruit and vegetable farming. Currently, its control heavily relies mainly on chemical insecticides, which pose health risks and have effects on pollinators. A more [...] Read more.
Ceratitis capitata, known as the Mediterranean fruit fly (Medfly), is a major dipteran pest significantly impacting fruit and vegetable farming. Currently, its control heavily relies mainly on chemical insecticides, which pose health risks and have effects on pollinators. A more sustainable and species-specific alternative strategy may be based on double-stranded RNA (dsRNA) delivery through feeding to disrupt essential functions in pest insects, which is poorly reported in dipteran species. Previous reports in Orthoptera and Coleoptera species suggested that dsRNA degradation by specific nucleases in the intestinal lumen is among the major obstacles to feeding-mediated RNAi in insects. In our study, we experimented with three-day adult feeding using a combination of dsRNA molecules that target the expression of the ATPase vital gene and two intestinal dsRNA nucleases. These dsRNA molecules were recently tested separately in two Tephritidae species, showing limited effectiveness. In contrast, by simultaneously feeding dsRNA against the CcVha68-1, CcdsRNase1, and CcdsRNase2 genes, we observed 79% mortality over seven days, which was associated with a decrease in mRNA levels of the three targeted genes. As expected, we also observed a reduction in dsRNA degradation following RNAi against nucleases. This research illustrates the potential of utilizing molecules as pesticides to achieve mortality rates in Medfly adults by targeting crucial genes and intestinal nucleases. Furthermore, it underscores the importance of exploring RNAi-based approaches for pest management. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

23 pages, 3170 KiB  
Article
Biochemical Characterization and Disease Control Efficacy of Pleurotus eryngii-Derived Chitosan—An In Vivo Study against Monilinia laxa, the Causal Agent of Plum Brown Rot
by Ippolito Camele, Amira A. Mohamed, Amira A. Ibrahim and Hazem S. Elshafie
Plants 2024, 13(18), 2598; https://doi.org/10.3390/plants13182598 - 17 Sep 2024
Viewed by 613
Abstract
Chitin (Ct) is a crucial biopolymer present in fungi, algae, arthropods, and is usually obtained from crustacean shells. Chitosan (Cs) is a derivative from Ct deacetylation, and possesses numerous uses in various agro-industrial fields. Research on fungal-derived Ct and Cs is mostly focused [...] Read more.
Chitin (Ct) is a crucial biopolymer present in fungi, algae, arthropods, and is usually obtained from crustacean shells. Chitosan (Cs) is a derivative from Ct deacetylation, and possesses numerous uses in various agro-industrial fields. Research on fungal-derived Ct and Cs is mostly focused on pharmaceutical uses, however their uses for plant disease control remain less explored. The main objective of the current study is to evaluate the possibility of using chitosan obtained from mushroom Pleurotus eryngii (Cs-Pe) for controlling some phytopathogens compared to commercial chitosan (C.Cs). This study is focused on the following key areas: (i) extracting Ct from P. eryngii mycelium and converting it to Cs through deacetylation, using both bleaching and non-bleaching methods; (ii) conducting a physico-chemical characterization and in vitro evaluation of the antimicrobial activity of the obtained Cs; (iii) performing an in vivo assessment of the phytotoxic and cytotoxic effects of Cs; and (iv) investigating in vivo the impact of the studied chitosan on fruit quality and its biocontrol efficacy against Monilinia laxa infections in plum fruits. Results showed that Cs-Pe, especially the unbleached one, displayed promising in vitro antimicrobial activity against the majority of tested pathogens. Regarding the cytotoxicity, the highest significant increase in cell abnormality percentage was observed in the case of C.Cs compared to Cs-Pe. In the in vivo study, Cs-Pe acted as a protective barrier, lowering and/or preventing moisture loss and firmness of treated plums. The studied Cs-Pe demonstrated notable efficacy against M. laxa which decreased the fruits’ percentage decline. These results strongly suggest that Cs derived from P. eryngii is a potential candidate for increasing plums’ shelf-life. This research shed light on the promising applications of P. eryngii-derived Cs in the agri-food field. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

19 pages, 987 KiB  
Review
The Biology, Impact, and Management of Xyleborus Beetles: A Comprehensive Review
by Sared Helena Rodríguez-Becerra, Rafael Vázquez-Rivera, Karla Irazú Ventura-Hernández, Tushar Janardan Pawar and José Luis Olivares-Romero
Insects 2024, 15(9), 706; https://doi.org/10.3390/insects15090706 - 17 Sep 2024
Viewed by 614
Abstract
Xyleborus beetles, a diverse group of ambrosia beetles, present challenges to forestry and agriculture due to their damaging burrowing behavior and symbiotic relationships with fungi. This review synthesizes current knowledge on the biology, ecology, and management of Xyleborus. We explore the beetles’ [...] Read more.
Xyleborus beetles, a diverse group of ambrosia beetles, present challenges to forestry and agriculture due to their damaging burrowing behavior and symbiotic relationships with fungi. This review synthesizes current knowledge on the biology, ecology, and management of Xyleborus. We explore the beetles’ life cycle, reproductive strategies, habitat preferences, and feeding habits, emphasizing their ecological and economic impacts. Control and management strategies, including preventive measures, chemical and biological control, and integrated pest management (IPM), are critically evaluated. Recent advances in molecular genetics and behavioral studies offer insights into genetic diversity, population structure, and host selection mechanisms. Despite progress, managing Xyleborus effectively remains challenging. This review identifies future research needs and highlights innovative control methods, such as biopesticides and pheromone-based trapping systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

21 pages, 6857 KiB  
Article
Prediction of Environmental Parameters for Predatory Mite Cultivation Based on Temporal Feature Clustering
by Ying Ma, Hongjie Lin, Wei Chen, Weijie Chen and Qianting Wang
Electronics 2024, 13(18), 3667; https://doi.org/10.3390/electronics13183667 - 15 Sep 2024
Viewed by 480
Abstract
With the significant annual increase in market demand for biopesticides, the industrial production demand for predatory mites, which hold the largest market share among biopesticides, has also been rising. To achieve efficient and low-energy consumption control of predatory mite breeding environmental parameters, accurate [...] Read more.
With the significant annual increase in market demand for biopesticides, the industrial production demand for predatory mites, which hold the largest market share among biopesticides, has also been rising. To achieve efficient and low-energy consumption control of predatory mite breeding environmental parameters, accurate estimation of breeding environmental parameters is necessary. This paper collects and pre-processes hourly time series data on temperature and humidity from industrial breeding environments. Time series prediction models such as SVR, LSTM, GRU, and LSTNet are applied to model and predict the historical data of the breeding environment. Experiments validate that the LSTNet model is more suitable for such environmental modeling. To further improve prediction accuracy, the training data for the LSTNet model is enhanced using hierarchical clustering of time series features. After augmentation, the root mean square error (RMSE) of the temperature prediction decreased by 27.3%, and the RMSE of the humidity prediction decreased by 32.8%, significantly improving the accuracy of the multistep predictions and providing substantial industrial application value. Full article
Show Figures

Figure 1

14 pages, 4957 KiB  
Article
Toxicity Evaluation of Potassium Sorbate In Vivo with Drosophila Melanogaster
by Xubo Zhang, Qian Zhang, Xiaoxuan Song, Wanchen Yang, Andi Cheng, Jianzhen Zhang and Wei Dong
Insects 2024, 15(9), 703; https://doi.org/10.3390/insects15090703 - 14 Sep 2024
Viewed by 644
Abstract
Potassium sorbate (PS) is a preservative widely used in the food, pharmaceutical, and cosmetics industries. Improper and careless use of PS can lead to various health issues and potential environmental problems. Drosophila is capable of making rapid and sensitive responses to stress or [...] Read more.
Potassium sorbate (PS) is a preservative widely used in the food, pharmaceutical, and cosmetics industries. Improper and careless use of PS can lead to various health issues and potential environmental problems. Drosophila is capable of making rapid and sensitive responses to stress or other stimuli. Here we utilized Drosophila as a model organism to evaluate the potential toxicity of PS. Our study revealed that PS ingestion reduced the lifespan and fecundity of Drosophila. In addition, excessive PS ingestion led to cell apoptosis and ROS accumulation in the midgut. Furthermore, PS intake also enhanced the mitophagy of midgut cells. Strikingly, PS affected the cell differentiation progression as well, leading to the production of more enteroendocrine (EE) cells. We further demonstrated that the expression of notch (N), a vital player in intestinal stem cell (ISC) differentiation, was down-regulated in the midgut. This indicates that the differentiation progression was affected potentially by repressing the N expression. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

16 pages, 2123 KiB  
Article
The Microbiological Activity of Soil in Response to Gliotoxin, the “Lethal Principle” of Trichoderma
by Anastasia V. Teslya, Elena V. Gurina, Artyom A. Stepanov, Aleksandr V. Iashnikov and Alexey S. Vasilchenko
Agronomy 2024, 14(9), 2084; https://doi.org/10.3390/agronomy14092084 - 12 Sep 2024
Viewed by 553
Abstract
Trichoderma is a soil-dwelling microorganism that has many benefits for plants and is therefore widely used in agriculture. Among the secondary metabolites produced by Trichoderma, gliotoxin (GT) is one of the most studied. The antagonistic effect of GT on other fungi was [...] Read more.
Trichoderma is a soil-dwelling microorganism that has many benefits for plants and is therefore widely used in agriculture. Among the secondary metabolites produced by Trichoderma, gliotoxin (GT) is one of the most studied. The antagonistic effect of GT on other fungi was first discovered by R. Weindling in 1934. He referred to it as the “lethal principle” of Trichoderma. Despite the long history of studying GT, its impact on the soil microbial community has remained largely unexplored. In our work, we investigated the response of the soil microbial community to different doses of GT (10–500 µM per kg) and different durations (7–56 days) of exposure. We measured microbiological parameters (CO2 emission, microbial biomass (MB)), calculated the eco-physiological indices and determined the activity of soil enzymes involved in the C, N, P and S cycles. We identified three types of microbial responses to GT: inhibition, stress and stimulation. The inhibitory effect developed only by day 56 and in the samples treated with 500 μM GT. The stress effect (increased CO2 emission and decreased MB) of GT on microbial communities was predominant. Soil extracellular enzymes also responded to GT to varying degrees. A stimulating effect of GT on enzyme activity was noted for β-D-1,4-cellobiosidase and β-1,4-glucosidase. The activity of arylsulfatase and leucine aminopeptidase decreased under the influence of GT up to day 28, but by the end of the experiment, there was a restoration of activity. We did not observe any significant changes in the activity of β-1,4-xylosidase, β-1,4-N-acetyl-glucosaminidase or acid phosphatase. The results obtained showed that GT at high, “man-made” doses can inhibit the microbiological activity of soil, but at naturally occurring concentrations, it can have a stimulating effect on soil microbiome functionality. Full article
Show Figures

Figure 1

Back to TopTop