Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,559)

Search Parameters:
Keywords = drift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4740 KiB  
Article
Research on the Seismic Response of Hybrid Concrete/Steel Structures Equipped with the Seesaw System
by George A. Papagiannopoulos, Panagiota S. Katsimpini and George D. Hatzigeorgiou
Vibration 2024, 7(4), 1190-1210; https://doi.org/10.3390/vibration7040061 (registering DOI) - 1 Dec 2024
Abstract
This research investigates the seismic performance of structures equipped with the seesaw system in relation to conventional structures within two- and five-storey mixed concrete and steel buildings. Through time history analysis, the study assesses structural responses to severe ground motion accelerograms, taking into [...] Read more.
This research investigates the seismic performance of structures equipped with the seesaw system in relation to conventional structures within two- and five-storey mixed concrete and steel buildings. Through time history analysis, the study assesses structural responses to severe ground motion accelerograms, taking into account both fixed-base conditions and soil–structure interaction (SSI) scenarios. The focus is on essential performance indicators such as maximum and residual displacements, inter-storey drift ratios, and floor accelerations. By comparing the structures with the seesaw system with bare structures, the research seeks to quantify the benefits of this novel design in mitigating seismic effects. A significant component of this study is the examination of various seismic incidence angles, specifically 0°, 90°, 180°, and 270°. This extensive approach facilitates a comprehensive evaluation of structural behavior under diverse directional loadings, thereby capturing a wide range of potential seismic responses. The analysis of these different incidence angles is vital for understanding how the orientation of structural elements, particularly steel columns in the mixed system, affects the seismic performance of the building. Additionally, incorporating SSI effects yields a more precise depiction of structural behavior during earthquakes, considering the impact of soil flexibility on the overall system response. Full article
15 pages, 1711 KiB  
Article
Research on ECG Signal Classification Based on Hybrid Residual Network
by Tianyu Qi, He Zhang, Huijun Zhao, Chong Shen and Xiaochen Liu
Appl. Sci. 2024, 14(23), 11202; https://doi.org/10.3390/app142311202 (registering DOI) - 1 Dec 2024
Viewed by 113
Abstract
Arrhythmia detection in electrocardiogram (ECG) signals is essential for monitoring cardiovascular health. Current automated arrhythmia classification methods frequently encounter difficulties in detecting multiple cardiac abnormalities, particularly when dealing with imbalanced datasets. This paper proposes a novel deep learning approach for the detection and [...] Read more.
Arrhythmia detection in electrocardiogram (ECG) signals is essential for monitoring cardiovascular health. Current automated arrhythmia classification methods frequently encounter difficulties in detecting multiple cardiac abnormalities, particularly when dealing with imbalanced datasets. This paper proposes a novel deep learning approach for the detection and classification of arrhythmias in ECG signals using a Hybrid Residual Network (Hybrid ResNet). Our method employs a Hybrid Residual Network architecture that integrates standard convolution, depthwise separable convolution, and residual connections to enhance the feature extraction efficiency and classification accuracy. To guarantee superior input signals, we preprocess the ECG signals by removing baseline drift with a high-pass Butterworth filter, denoising via discrete wavelet transform, and segmenting heartbeat cycles through R-peak detection. Additionally, we rectify the class imbalance in the MIT-BIH Arrhythmia Database by applying the Synthetic Minority Oversampling Technique (SMOTE), therefore enhancing the model’s ability to detect infrequent arrhythmia types. The suggested system achieves a classification accuracy of 99.09% on the MIT-BIH dataset, surpassing conventional convolutional neural networks and other state-of-the-art methodologies. Compared to existing approaches, our strategy exhibits superior effectiveness and robustness in managing diverse irregular heartbeats and arrhythmias. Full article
Show Figures

Figure 1

27 pages, 22427 KiB  
Article
Multi-Camera Rig and Spherical Camera Assessment for Indoor Surveys in Complex Spaces
by Luca Perfetti, Nazarena Bruno and Riccardo Roncella
Remote Sens. 2024, 16(23), 4505; https://doi.org/10.3390/rs16234505 (registering DOI) - 1 Dec 2024
Viewed by 153
Abstract
This study compares the photogrammetric performance of three multi-camera systems—two spherical cameras (INSTA 360 Pro2 and MG1) and one multi-camera rig (ANT3D)—to evaluate their accuracy and precision in confined environments. These systems are particularly suited for indoor surveys, such as narrow spaces, where [...] Read more.
This study compares the photogrammetric performance of three multi-camera systems—two spherical cameras (INSTA 360 Pro2 and MG1) and one multi-camera rig (ANT3D)—to evaluate their accuracy and precision in confined environments. These systems are particularly suited for indoor surveys, such as narrow spaces, where traditional methods face limitations. The instruments were tested for the survey of a narrow spiral staircase within Milan Cathedral and the results were analyzed based on different processing strategies, including different relative constraints between sensors, various calibration sets for distortion parameters, interior orientation (IO), and relative orientation (RO), as well as two different ground control solutions. This study also included a repeatability test. The findings showed that, with appropriate ground control, all systems achieved the target accuracy of 1 cm. In partially unconstrained scenarios, the drift errors ranged between 5 and 10 cm. Performance varied depending on the processing pipelines; however, the results suggest that imposing a multi-camera constraint between sensors and estimating both IO and RO parameters during the Bundle Block Adjustment yields the best outcomes. In less stable environments, it might be preferable to pre-calibrate and fix the IO parameters. Full article
Show Figures

Figure 1

20 pages, 23810 KiB  
Article
Development of a Zynq-Based Seismic Acquisition Station for the Exploration of Antarctic Subglacial Lakes
by Keyu Zhou, Qisheng Zhang, Linyan Guo, Guangkun Feng, Changhong Li, Jinhang Zhang and Qifei Zhang
Sensors 2024, 24(23), 7667; https://doi.org/10.3390/s24237667 (registering DOI) - 30 Nov 2024
Viewed by 252
Abstract
The Antarctic region holds significant scientific research value and potential resources. Currently, limited research exists on the use of seismic exploration methods for Antarctic subglacial lakes compared to their use on other continents. Moreover, few reports are available on systems capable of multi-channel [...] Read more.
The Antarctic region holds significant scientific research value and potential resources. Currently, limited research exists on the use of seismic exploration methods for Antarctic subglacial lakes compared to their use on other continents. Moreover, few reports are available on systems capable of multi-channel seismic data acquisition, remote data quality monitoring, and high-speed real-time data recycling in the extremely low temperatures of Antarctica. In this study, we developed a Zynq-based seismic acquisition station for polar exploration. The system features a compact design, lightweight construction, high data collection accuracy, excellent cold resistance, low power consumption, and real-time control. The software and hardware design of the system are described here, and validity testing is presented. The main controller utilizes a Zynq series system-on-chip integrated with an FPGA (Field-Programmable Gate Array) and an ARM (Advanced RISC Machine), enabling functions such as local data storage on a secure digital card, Wi-Fi wireless human–machine interaction, and high-speed Ethernet data transmission. Furthermore, to enhance data acquisition accuracy under low-temperature conditions, a neural network was employed for the temperature drift correction of the analog-to-digital converter chip. The validity test results showed that the station operated stably, was easy to use, and met the high-standard requirements for polar exploration. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 11335 KiB  
Article
Water–Gas Shift over Pt Nanoparticles Dispersed on CeO2 and Gadolinium-Doped Ceria (GDC) Supports with Specific Nano-Configurations
by Athanasios Androulakis, Ersi Nikolaraki, Catherine Drosou, Kalliopi Maria Papazisi, Stella Balomenou, Dimitrios Tsiplakides, Konstantinos G. Froudas, Pantelis N. Trikalitis, Dimitrios P. Gournis, Paraskevi Panagiotopoulou and Ioannis V. Yentekakis
Nanomaterials 2024, 14(23), 1928; https://doi.org/10.3390/nano14231928 (registering DOI) - 29 Nov 2024
Viewed by 288
Abstract
The water–gas shift (WGS) reaction is one of the most significant reactions in hydrogen technology since it can be used directly to produce hydrogen from the reaction of CO and water; it is also a side reaction taking place in the hydrocarbon reforming [...] Read more.
The water–gas shift (WGS) reaction is one of the most significant reactions in hydrogen technology since it can be used directly to produce hydrogen from the reaction of CO and water; it is also a side reaction taking place in the hydrocarbon reforming processes, determining their selectivity towards H2 production. The development of highly active WGS catalysts, especially at temperatures below ~450 °C, where the reaction is thermodynamically favored but kinetically limited, remains a challenge. From a fundamental point of view, the reaction mechanism is still unclear. Since specific nanoshapes of CeO2-based supports have recently been shown to play an important role in the performance of metal nanoparticles dispersed on their surface, in this study, a comparative study of the WGS is conducted on Pt nanoparticles dispersed (with low loading, 0.5 wt.% Pt) on CeO2 and gadolinium-doped ceria (GDC) supports of different nano-morphologies, i.e., nanorods (NRs) and irregularly faceted particle (IRFP) CeO2 and GDC, produced by employing hydrothermal and (co-)precipitation synthesis methods, respectively. The results showed that the support’s shape strongly affected its physicochemical properties and in turn the WGS performance of the dispersed Pt nanoparticles. Nanorod-shaped CeO2,NRs and GDCNRs supports presented a higher specific surface area, lower primary crystallite size and enhanced reducibility at lower temperatures compared to the corresponding irregular faceted CeO2,IRFP and GDCIRFP supports, leading to up to 5-fold higher WGS activity of the Pt particles supported on them. The Pt/GDCNRs catalyst outperformed all other catalysts and exhibited excellent time-on-stream (TOS) stability. A variety of techniques, namely N2 physical adsorption–desorption (the BET method), scanning and transmission electron microscopies (SEM and TEM), powder X-ray diffraction (PXRD) and hydrogen temperature programmed reduction (H2-TPR), were used to identify the texture, structure, morphology and other physical properties of the materials, which together with the in situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and detailed kinetic studies helped to decipher their catalytic behavior. The enhanced metal–support interactions of Pt nanoparticles with the nanorod-shaped CeO2,NRs and GDCNRs supports due to the creation of more active sites at the metal–support interface, leading to significantly improved reducibility of these catalysts, were concluded to be the critical factor for their superior WGS activity. Both the redox and associative reaction mechanisms proposed for WGS in the literature were found to contribute to the reaction pathway. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

23 pages, 6644 KiB  
Article
Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly
by Mu Peng, Guangai Deng, Chongyang Hu, Xue Hou and Zhiyong Wang
Microorganisms 2024, 12(12), 2458; https://doi.org/10.3390/microorganisms12122458 - 29 Nov 2024
Viewed by 275
Abstract
Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite [...] Read more.
Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, Rhodococcus qingshengii PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils. Exposure to sodium selenite initially led to reductions in microbial diversity and a shift in dominant bacterial groups, particularly an increase in Actinobacteria and a decrease in Acidobacteria. Sodium selenite significantly reduced microbial diversity and simplified co-occurrence networks, whereas inoculation with strain PM1 partially reversed these effects by enhancing community complexity. Ecological modeling, including the normalized stochasticity ratio (NST) and Sloan’s neutral community model (NCM), suggested that stochastic processes predominated in the assembly of bacterial communities under selenium stress. Null model analysis further revealed that heterogeneous selection and drift were primary drivers of community turnover, with PM1 inoculation promoting species dispersal and buffering against the negative impacts of selenium. These findings shed light on microbial community assembly mechanisms under selenium contamination and highlight the potential of strain PM1 for the bioremediation of selenium-affected soils. Full article
Show Figures

Figure 1

19 pages, 6393 KiB  
Article
The Effect of Story Drifts in Determining the Earthquake Performance of High-Rise Buildings
by Mehmet Gokhan Guler and Kadir Guler
Buildings 2024, 14(12), 3830; https://doi.org/10.3390/buildings14123830 - 29 Nov 2024
Viewed by 379
Abstract
In performance-based design and assessment, there are prescriptive limits based not only on element-based performance evaluation but also on comparing story drifts with limit values. The process of determining performance levels at the element level involves obtaining the required data through numerous calculation [...] Read more.
In performance-based design and assessment, there are prescriptive limits based not only on element-based performance evaluation but also on comparing story drifts with limit values. The process of determining performance levels at the element level involves obtaining the required data through numerous calculation steps, followed by evaluation, which makes it a time-consuming process. The iterative nature of this process emphasizes the importance of selecting the structural system, element dimensions, and target performance levels during the preliminary design stage to ensure they are consistent with the final analysis results. For this purpose, the determination of story drifts, which is widely accepted in the literature, is a critical aspect of performance evaluation studies, particularly for high-rise buildings, within the framework of deformation-based calculation assumptions. The continuum model is a practical approach for the approximate analysis of high-rise buildings including moment-resisting frames and shear wall-frame systems. In the continuum model, discrete buildings are simplified such that their overall behavior is described through the contributions of flexural and shear stiffnesses at the story levels. In this study, the aim is to enhance the Miranda and Taghavi (2005) model, which is classified among the approximate methods in the literature for determining story drifts and is developed within the framework of continuum model approaches. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 4970 KiB  
Article
Environmental Impact of Earthquake-Resistant Design: A Sustainable Approach to Structural Response in High Seismic Risk Regions
by Alvaro Bohorquez, Esteban Viteri, Edgar Rivera and Carlos Avila
Buildings 2024, 14(12), 3821; https://doi.org/10.3390/buildings14123821 - 28 Nov 2024
Viewed by 280
Abstract
This study evaluates the environmental impact of earthquake-resistant structural design choices in high-risk seismic regions through life cycle assessment. As climate change concerns intensify, understanding the environmental implications of structural design decisions becomes crucial for sustainable construction. Examining a building in Quito, Ecuador, [...] Read more.
This study evaluates the environmental impact of earthquake-resistant structural design choices in high-risk seismic regions through life cycle assessment. As climate change concerns intensify, understanding the environmental implications of structural design decisions becomes crucial for sustainable construction. Examining a building in Quito, Ecuador, the research compares three structural systems: Optimized Framed System (OFS), Optimized Dual System (ODS), and Equivalent Framed System (EFS). The assessment quantifies emissions through a ‘cradle to gate’ approach, encompassing materials fabrication, transportation, and construction processes. The results demonstrate that the ODS achieves optimal seismic performance equal to the EFS while reducing emissions by 38%, with only 5% higher emissions than the OFS. The findings establish that effective earthquake-resistant design can simultaneously achieve structural resilience and environmental sustainability, providing valuable insights for sustainable structural engineering practices in seismic regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

33 pages, 14639 KiB  
Article
Multi-Sensor Fusion for Wheel-Inertial-Visual Systems Using a Fuzzification-Assisted Iterated Error State Kalman Filter
by Guohao Huang, Haibin Huang, Yaning Zhai, Guohao Tang, Ling Zhang, Xingyu Gao, Yang Huang and Guoping Ge
Sensors 2024, 24(23), 7619; https://doi.org/10.3390/s24237619 - 28 Nov 2024
Viewed by 306
Abstract
This paper investigates the odometry drift problem in differential-drive indoor mobile robots and proposes a multi-sensor fusion approach utilizing a Fuzzy Inference System (FIS) within a Wheel-Inertial-Visual Odometry (WIVO) framework to optimize the 6-DoF localization of the robot in unstructured scenes. The structure [...] Read more.
This paper investigates the odometry drift problem in differential-drive indoor mobile robots and proposes a multi-sensor fusion approach utilizing a Fuzzy Inference System (FIS) within a Wheel-Inertial-Visual Odometry (WIVO) framework to optimize the 6-DoF localization of the robot in unstructured scenes. The structure and principles of the multi-sensor fusion system are developed, incorporating an Iterated Error State Kalman Filter (IESKF) for enhanced accuracy. An FIS is integrated with the IESKF to address the limitations of traditional fixed covariance matrices in process and observation noise, which fail to adapt effectively to complex kinematic characteristics and visual observation challenges such as varying lighting conditions and unstructured scenes in dynamic environments. The fusion filter gains in FIS-IESKF are adaptively adjusted for noise predictions, optimizing the rule parameters of the fuzzy inference process. Experimental results demonstrate that the proposed method effectively enhances the localization accuracy and system robustness of differential-drive indoor mobile robots in dynamically changing movements and environments. Full article
Show Figures

Figure 1

20 pages, 5859 KiB  
Article
Quantitative Seismic Damage Assessment of Resilient Concrete Columns Using Drift Ratio-Based Fractal Dimension
by Bunka Son, Ganggang Li, Zhiwei Luo and Yuping Sun
Materials 2024, 17(23), 5850; https://doi.org/10.3390/ma17235850 - 28 Nov 2024
Viewed by 261
Abstract
The objective of this paper is to develop assessment models to quantitatively evaluate the seismic damage caused to resilient concrete columns intended for buildings located in strong-earthquake-prone regions such as Japan and China. The proposed damage assessment models are based on the fractal [...] Read more.
The objective of this paper is to develop assessment models to quantitatively evaluate the seismic damage caused to resilient concrete columns intended for buildings located in strong-earthquake-prone regions such as Japan and China. The proposed damage assessment models are based on the fractal analysis of crack patterns on the surface of damaged concrete columns and expressed in the form of a fractal dimension (FD) versus transient drift ratio relationship. To calibrate the proposed damage assessment models, a total of eighty images of crack patterns for eight concrete columns were utilized. All the columns were reinforced by weakly bonded ultra-high-strength (WBUHS) rebars and tested under reversed cyclic loading. The experimental variables covered the shear span ratio of the column, the concrete strength, the axial load ratio, and the amount of steel in the WBUHS rebars. A box-counting algorithm was adopted to calculate or derive the FD of the crack pattern corresponding to each transient drift ratio. The test results reveal that the FD is an efficient image-based quantitative indicator of seismic damage degree for resilient concrete columns and correlates strongly with the transient drift ratio and is subjected to the influence of the shear span ratio. The influence of the other experimental variables on the derived FDs is, if any, little. Based on the test results, a linear equation was developed to define the relationships between the FD and transient drift ratio, and a multi-linear equation was formulated to relate the transient drift ratio to the residual drift ratio, an important index adopted in current design guidelines to measure the repairability of damaged concrete structures. To further verify the efficiency of the drift ratio-based FD in seismic damage assessment, the correlation between the FD and relative stiffness loss (RSL), an indicator used to measure the overall damage degree of concrete structures, was also examined. The driven FD exhibited very strong correlation with RSL, and an empirical equation was developed to reliably assess the overall seismic damage degree of resilient concrete columns with an FD. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 6378 KiB  
Article
Seismic Response of Prestressed Self-Centering Moment-Resisting Frames
by Xueyuan Yan, Shen Shi, Huimin Mao and Zhongnan Lin
Buildings 2024, 14(12), 3811; https://doi.org/10.3390/buildings14123811 - 28 Nov 2024
Viewed by 236
Abstract
This paper aims to examine the seismic response of prestressed self-centering moment-resisting frames (PSC-MRFs) based on concrete-filled double steel tubular (CFDST) columns and RC beams. The beam of this novel connection is divided into two parts, connected by bolts and tendons, and the [...] Read more.
This paper aims to examine the seismic response of prestressed self-centering moment-resisting frames (PSC-MRFs) based on concrete-filled double steel tubular (CFDST) columns and RC beams. The beam of this novel connection is divided into two parts, connected by bolts and tendons, and the beam includes a gap opening feature, which could be regarded as a normal single beam in the field. Cyclic loading analysis was performed on one-story frames with different initial parameters arranged in adjacent bays. Nonlinear dynamic analysis was conducted on a six-story frame under two seismic hazard levels. The cyclic loading analysis showed favorable self-centering performance of the frame even when the hysteretic energy dissipation ratio reached 0.808. Seismic analysis results showed that compared with the in situ reinforced concrete frame, PSC-MRFs generally had similar maximum inter-story drifts under fortification earthquakes, but the residual inter-story drifts were reduced by 33%; under rare earthquakes, the maximum inter-story drifts and residual inter-story drifts of PSC-MRFs were reduced by 22% and more than 90%, respectively. In the adjacent bays on the same story of PSC-MRFs, connections with smaller imminent moments of gap opening opened earlier under earthquake, and the maximum opening angle was larger. The general seismic performance and self-centering of PSC-MRFs was significantly more advantageous than that of in situ reinforced concrete frames. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

13 pages, 2544 KiB  
Article
Research on High-Precision and Wide-Range Spacecraft Potential Measurement Method Based on Capacitive Voltage Division
by Hong Yin, Haibo Liu, Xiaogang Qin, Qing Liu, Jun Wang, Xuan Wen, Peng Wang, Zixin Yu and Shengsheng Yang
Sensors 2024, 24(23), 7583; https://doi.org/10.3390/s24237583 - 27 Nov 2024
Viewed by 298
Abstract
The charging and discharging of satellite surfaces induced by the space plasma environment constitute a primary cause of spacecraft anomalies, particularly in geosynchronous orbits subject to geomagnetic substorms and hot plasma injections from the magnetotail, where satellites are prone to unequal high-potential charging, [...] Read more.
The charging and discharging of satellite surfaces induced by the space plasma environment constitute a primary cause of spacecraft anomalies, particularly in geosynchronous orbits subject to geomagnetic substorms and hot plasma injections from the magnetotail, where satellites are prone to unequal high-potential charging, significantly impacting the safe and reliable operation of spacecraft. Addressing the need for measuring these unequal charge states, a high-precision, wide-range spacecraft potential measurement method based on capacitive voltage division was investigated. This study analyzed the mechanism of potential measurement and the factors contributing to errors during the measurement process, explored optimal design methodologies, and innovatively developed a fundamental charge zeroing method to resolve output drift issues caused by accumulated errors fundamentally. Consequently, a non-contact potential measurement system was developed, featuring a measurement range of up to −15,000 V, a resolution below 15 V, and a nonlinear error of less than 0.1%. This system provides technical support for monitoring the potential state of spacecraft and ensuring their safety and protection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 3076 KiB  
Article
Neuraminidase Antibody Response to Homologous and Drifted Influenza A Viruses After Immunization with Seasonal Influenza Vaccines
by Yulia Desheva, Maria Sergeeva, Polina Kudar, Andrey Rekstin, Ekaterina Romanovskaya-Romanko, Vera Krivitskaya, Kira Kudria, Ekaterina Bazhenova, Ekaterina Stepanova, Evelina Krylova, Maria Kurpiaeva, Dmitry Lioznov, Marina Stukova and Irina Kiseleva
Vaccines 2024, 12(12), 1334; https://doi.org/10.3390/vaccines12121334 - 27 Nov 2024
Viewed by 301
Abstract
Background/Objectives: Humoral immunity directed against neuraminidase (NA) of the influenza virus may soften the severity of infection caused by new antigenic variants of the influenza viruses. Evaluation of NA-inhibiting (NI) antibodies in combination with antibodies to hemagglutinin (HA) may enhance research on the [...] Read more.
Background/Objectives: Humoral immunity directed against neuraminidase (NA) of the influenza virus may soften the severity of infection caused by new antigenic variants of the influenza viruses. Evaluation of NA-inhibiting (NI) antibodies in combination with antibodies to hemagglutinin (HA) may enhance research on the antibody response to influenza vaccines. Methods: The study examined 64 pairs of serum samples from patients vaccinated with seasonal inactivated trivalent influenza vaccines (IIVs) in 2018 according to the formula recommended by the World Health Organization (WHO) for the 2018–2019 flu season. Antibodies against drift influenza viruses A/Guangdong-Maonan/SWL1536/2019(H1N1)pdm09 and A/Brisbane/34/2018(H3N2) were studied before vaccination and 21 days after vaccination. To assess NI antibodies, we used an enzyme-linked lectin assay (ELLA) with pairs of reassortant viruses A/H6N1 and A/H6N2. Anti-HA antibodies were detected using a hemagglutination inhibition (HI) test. The microneutralization (MN) test was performed in the MDCK cell line using viruses A/H6N1 and A/H6N2. Results: Seasonal IIVs induce a significant immune response of NI antibodies against influenza A/H1N1pdm09 and A/H3N2 viruses. A significantly reduced ‘herd’ immunity to drift influenza A/H1N1pdm09 and A/H3N2 viruses was shown, compared with previously circulating strains. This reduction was most pronounced in strains possessing neuraminidase N2. Seasonal IIVs caused an increase in antibodies against homologous and drifted viruses; however, an increase in antibodies to drifting viruses was observed more often among older patients. The level of NI antibodies for later A/H1N1pdm09 virus in response to IIVs was statistically significantly lower among younger people. After IIV vaccination, the percentage of individuals with HI antibody levels ≥ 1:40 and NI antibody levels ≥ 1:20 was 32.8% for drift A/H1N1pdm09 virus and 17.2% for drift A/H3N2 virus. Antisera containing HI and NI antibodies exhibited neutralizing properties in vitro against viruses with unrelated HA of the H6 subtype. Conclusions: Drift A/H1N1pdm09 and A/H3N2 viruses demonstrated significantly lower reactivity to HI and NI antibodies against early influenza viruses. In response to seasonal IIVs, the level of seroprotection has increased, including against drift influenza A viruses, but protective antibody levels against A/H1N1pdm09 have risen to a greater extent. A reduced immune response to the N1 protein of the A/H1N1pdm09 drift virus was obtained in individuals under 60 years of age. Based on our findings, it is hypothesized that in the cases of a HA mismatch, vaccination against N1-containing influenza viruses may be necessary for individuals under 60, while broader population-level vaccination against N2-containing viruses may be required. Full article
(This article belongs to the Special Issue The Recent Development of Influenza Vaccine: 2nd Edition)
Show Figures

Figure 1

18 pages, 25984 KiB  
Article
Optimal Attitude Determination for the CR200 Underwater Walking Robot
by Seok Pyo Yoon, Sung-Ho Jeong, Dong Kyun Kim, Seong-yeol Yoo, Bong-Huan Jun, Jong-Boo Han, Hyungwoo Kim and Hyung Taek Ahn
Appl. Sci. 2024, 14(23), 11027; https://doi.org/10.3390/app142311027 - 27 Nov 2024
Viewed by 334
Abstract
The Crabster CR200 is an underwater walking robot inspired by crabs and lobsters, designed for precise seabed inspection and manipulation. It maintains stability and position on the seafloor, even in strong currents, by adjusting its posture through six legs, each with four degrees [...] Read more.
The Crabster CR200 is an underwater walking robot inspired by crabs and lobsters, designed for precise seabed inspection and manipulation. It maintains stability and position on the seafloor, even in strong currents, by adjusting its posture through six legs, each with four degrees of freedom. The key advantage of the CR200 lies in its ability to resist drifting in strong currents by adapting its posture to maintain its position on the seafloor. However, information is still lacking on which specific posture generates the maximum downforce to ensure optimal stability in the presence of currents and the seabed. This study aims to determine the fluid forces acting on the CR200 in various postures using Computational Fluid Dynamics (CFD) and identify the posture that generates the maximum downforce. The posture is defined by two parameters: angle of attack and seafloor clearance, represented by the combination of the robot’s pitch angle and distance to the seabed. By varying these parameters, we identified the posture that produces the greatest downforce. Through a series of analyses, we identified two main fluid dynamic principles affecting the downforce on a robot close to the seabed. First, an optimal pitch angle exists that generates the maximum downward lift on the robot’s body. Secondly, there is an ideal distance from the seabed that produces maximum suction on the bottom surface, thereby creating a strong Venturi effect. Based on these principles, we determined the optimal robot posture to achieve maximum downforce in strong current conditions. The optimal underwater robot posture identified in this study could be applied to similar robots operating on the seafloor. Furthermore, the methodology adopted in this study for determining the optimal posture can serve as a reference for establishing operational postures for similar underwater robots. Full article
(This article belongs to the Special Issue Recent Advances in Underwater Vehicles)
Show Figures

Figure 1

16 pages, 2963 KiB  
Article
A Mechanism for Slow Electrostatic Solitary Waves in the Earth’s Plasma Sheet
by Gurbax Singh Lakhina and Satyavir Singh
Plasma 2024, 7(4), 904-919; https://doi.org/10.3390/plasma7040050 - 27 Nov 2024
Viewed by 572
Abstract
An analysis of the Magnetospheric Multiscale (MMS) spacecraft data shows the presence of slow electrostatic solitary waves (SESWs) in the Earth’s plasma sheet, which have been interpreted as slow electron holes (SEHs). An alternative mechanism based on slow ion-acoustic solitons is proposed for [...] Read more.
An analysis of the Magnetospheric Multiscale (MMS) spacecraft data shows the presence of slow electrostatic solitary waves (SESWs) in the Earth’s plasma sheet, which have been interpreted as slow electron holes (SEHs). An alternative mechanism based on slow ion-acoustic solitons is proposed for these SESWs. The SESWs are observed in the region where double humped ion distributions and hot electrons co-exist. Our theoretical model considers the plasma in the SESW region to consist of hot electrons with a vortex distribution, core Maxwellian protons drifting parallel to the magnetic field, B and beam protons drifting anti-parallel to B. Parallel propagating nonlinear ion-acoustic waves are studied using the Sagdeev pseudopotential technique. The analysis yields four types of modes, namely, two slow ion-acoustic (SIA1 and SIA2) solitons and two fast ion-acoustic (FIA1 and FIA2) solitons. All solitons have positive potentials. Except the FIA1 solitons which propagate parallel to B; the other three types propagate anti-parallel to B. Good agreement is found between the amplitudes of electrostatic potential, the electric field, the widths and speed of SIA1 and SIA2 solitons, and the observed properties of SESWs by the MMS spacecraft. Full article
Show Figures

Figure 1

Back to TopTop