
- MySQL Basics
- MySQL - Home
- MySQL - Introduction
- MySQL - Features
- MySQL - Versions
- MySQL - Variables
- MySQL - Installation
- MySQL - Administration
- MySQL - PHP Syntax
- MySQL - Node.js Syntax
- MySQL - Java Syntax
- MySQL - Python Syntax
- MySQL - Connection
- MySQL - Workbench
- MySQL Databases
- MySQL - Create Database
- MySQL - Drop Database
- MySQL - Select Database
- MySQL - Show Database
- MySQL - Copy Database
- MySQL - Database Export
- MySQL - Database Import
- MySQL - Database Info
- MySQL Users
- MySQL - Create Users
- MySQL - Drop Users
- MySQL - Show Users
- MySQL - Change Password
- MySQL - Grant Privileges
- MySQL - Show Privileges
- MySQL - Revoke Privileges
- MySQL - Lock User Account
- MySQL - Unlock User Account
- MySQL Tables
- MySQL - Create Tables
- MySQL - Show Tables
- MySQL - Alter Tables
- MySQL - Rename Tables
- MySQL - Clone Tables
- MySQL - Truncate Tables
- MySQL - Temporary Tables
- MySQL - Repair Tables
- MySQL - Describe Tables
- MySQL - Add/Delete Columns
- MySQL - Show Columns
- MySQL - Rename Columns
- MySQL - Table Locking
- MySQL - Drop Tables
- MySQL - Derived Tables
- MySQL Queries
- MySQL - Queries
- MySQL - Constraints
- MySQL - Insert Query
- MySQL - Select Query
- MySQL - Update Query
- MySQL - Delete Query
- MySQL - Replace Query
- MySQL - Insert Ignore
- MySQL - Insert on Duplicate Key Update
- MySQL - Insert Into Select
- MySQL Indexes
- MySQL - Indexes
- MySQL - Create Index
- MySQL - Drop Index
- MySQL - Show Indexes
- MySQL - Unique Index
- MySQL - Clustered Index
- MySQL - Non-Clustered Index
- MySQL Operators and Clauses
- MySQL - Where Clause
- MySQL - Limit Clause
- MySQL - Distinct Clause
- MySQL - Order By Clause
- MySQL - Group By Clause
- MySQL - Having Clause
- MySQL - AND Operator
- MySQL - OR Operator
- MySQL - Like Operator
- MySQL - IN Operator
- MySQL - ANY Operator
- MySQL - EXISTS Operator
- MySQL - NOT Operator
- MySQL - NOT EQUAL Operator
- MySQL - IS NULL Operator
- MySQL - IS NOT NULL Operator
- MySQL - Between Operator
- MySQL - UNION Operator
- MySQL - UNION vs UNION ALL
- MySQL - MINUS Operator
- MySQL - INTERSECT Operator
- MySQL - INTERVAL Operator
- MySQL Joins
- MySQL - Using Joins
- MySQL - Inner Join
- MySQL - Left Join
- MySQL - Right Join
- MySQL - Cross Join
- MySQL - Full Join
- MySQL - Self Join
- MySQL - Delete Join
- MySQL - Update Join
- MySQL - Union vs Join
- MySQL Keys
- MySQL - Unique Key
- MySQL - Primary Key
- MySQL - Foreign Key
- MySQL - Composite Key
- MySQL - Alternate Key
- MySQL Triggers
- MySQL - Triggers
- MySQL - Create Trigger
- MySQL - Show Trigger
- MySQL - Drop Trigger
- MySQL - Before Insert Trigger
- MySQL - After Insert Trigger
- MySQL - Before Update Trigger
- MySQL - After Update Trigger
- MySQL - Before Delete Trigger
- MySQL - After Delete Trigger
- MySQL Data Types
- MySQL - Data Types
- MySQL - VARCHAR
- MySQL - BOOLEAN
- MySQL - ENUM
- MySQL - DECIMAL
- MySQL - INT
- MySQL - FLOAT
- MySQL - BIT
- MySQL - TINYINT
- MySQL - BLOB
- MySQL - SET
- MySQL Regular Expressions
- MySQL - Regular Expressions
- MySQL - RLIKE Operator
- MySQL - NOT LIKE Operator
- MySQL - NOT REGEXP Operator
- MySQL - regexp_instr() Function
- MySQL - regexp_like() Function
- MySQL - regexp_replace() Function
- MySQL - regexp_substr() Function
- MySQL Fulltext Search
- MySQL - Fulltext Search
- MySQL - Natural Language Fulltext Search
- MySQL - Boolean Fulltext Search
- MySQL - Query Expansion Fulltext Search
- MySQL - ngram Fulltext Parser
- MySQL Functions & Operators
- MySQL - Date and Time Functions
- MySQL - Arithmetic Operators
- MySQL - Numeric Functions
- MySQL - String Functions
- MySQL - Aggregate Functions
- MySQL Misc Concepts
- MySQL - NULL Values
- MySQL - Transactions
- MySQL - Using Sequences
- MySQL - Handling Duplicates
- MySQL - SQL Injection
- MySQL - SubQuery
- MySQL - Comments
- MySQL - Check Constraints
- MySQL - Storage Engines
- MySQL - Export Table into CSV File
- MySQL - Import CSV File into Database
- MySQL - UUID
- MySQL - Common Table Expressions
- MySQL - On Delete Cascade
- MySQL - Upsert
- MySQL - Horizontal Partitioning
- MySQL - Vertical Partitioning
- MySQL - Cursor
- MySQL - Stored Functions
- MySQL - Signal
- MySQL - Resignal
- MySQL - Character Set
- MySQL - Collation
- MySQL - Wildcards
- MySQL - Alias
- MySQL - ROLLUP
- MySQL - Today Date
- MySQL - Literals
- MySQL - Stored Procedure
- MySQL - Explain
- MySQL - JSON
- MySQL - Standard Deviation
- MySQL - Find Duplicate Records
- MySQL - Delete Duplicate Records
- MySQL - Select Random Records
- MySQL - Show Processlist
- MySQL - Change Column Type
- MySQL - Reset Auto-Increment
- MySQL - Coalesce() Function
MySQL - EXPLAIN
The MySQL EXPLAIN Statement
The MySQL EXPLAIN statement is used to provide the execution plan of a query. This statement works similar to the DESCRIBE query; while the DESCRIBE query provides the structure plan of a table, the EXPLAIN statement describes how a query is being executed.
You can use the EXPLAIN statement in situations where a query is taking too much time in order to be executed. It displays the execution plan of such slower queries, allowing you to apply indexes wherever necessary to speed up the execution process.
Note that you cannot use too many indexes on a query either; as it might make the query even slower.
This statement works with the SELECT, DELETE, INSERT, REPLACE and UPDATE statements.
Syntax
Following is the syntax of the EXPLAIN statement −
EXPLAIN tbl_name [col_name | wild]
Example
Assume we have created a table named CUSTOMERS in MySQL database as shown below −
CREATE TABLE CUSTOMERS ( ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, ADDRESS CHAR (25), PRIMARY KEY (ID) );
You can use the EXPLAIN statement to view the execution plan of this table as shown below −
EXPLAIN CUSTOMERS;
The output will provide information about the table's structure, including columns and their attributes as follows −
Field | Type | Null | Key | Default | Extra |
---|---|---|---|---|---|
ID | int | NO | PRI | NULL | |
NAME | varchar(20) | NO | NULL | ||
ADDRESS | char(25) | YES | NULL |
You can also use the EXPLAIN statement to obtain details about a specific column as shown below −
EXPLAIN CUSTOMERS NAME;
Output
Following is the output obtained −
Field | Type | Null | Key | Default | Extra |
---|---|---|---|---|---|
NAME | varchar(20) | NO | NULL |
EXPLAIN is most commonly used with SELECT queries to analyze their execution plans. Consider the following query −
EXPLAIN SELECT * FROM CUSTOMERS WHERE NAME LIKE 'k%';
The table obtained is as follows −
id | select_type | table | partitions | type | possible_keys |
---|---|---|---|---|---|
1 | SIMPLE | CUSTOMERS | NULL | ALL | NULL |
Note that not all columns in the table have been displayed in the output above; there are additional columns present.
EXPLAIN and ANALYZE
If we use the EXPLAIN statement with ANALYZE, it gives additional information such as timing of the execution and iterator-based information like −
- Estimated execution cost.
- Estimated number of returned rows.
- Time to return first row.
- Time to return all rows (actual cost), in milliseconds.
- Number of rows returned by the iterator.
- Number of loops.
Example
Following is an example of the EXPLAIN statement with ANALYZE −
EXPLAIN ANALYZE SELECT * FROM CUSTOMERS;
It displays the output that includes more timing and cost-related details as shown below −
EXPLAIN |
---|
> Table scan on CUSTOMERS (cost=0.35 rows=1) (actual time=0.070..0.070 rows=0 loops=1) |
Example
First, let us insert values into the CUSTOMERS table created above using the INSERT statement −
INSERT INTO CUSTOMERS VALUES (1, 'Ramesh', 'Ahmedabad' ), (2, 'Khilan', 'Delhi' ), (3, 'kaushik', 'Kota'), (4, 'Chaitali', 'Mumbai' ), (5, 'Hardik', 'Bhopal' ), (6, 'Komal', 'MP' ), (7, 'Muffy', 'Indore' );
Let us create another table ORDERS, containing the details of orders made and the date they are made on −
CREATE TABLE ORDERS ( OID INT NOT NULL, DATE VARCHAR (20) NOT NULL, CUST_ID INT NOT NULL, AMOUNT DECIMAL (18, 2) );
Now, we are inserting some data into the ORDERS table as follows −
INSERT INTO ORDERS VALUES (102, '2009-10-08 00:00:00', 3, 3000.00), (100, '2009-10-08 00:00:00', 3, 1500.00), (101, '2009-11-20 00:00:00', 2, 1560.00), (103, '2008-05-20 00:00:00', 4, 2060.00);
Following query deletes records from the above created tables −
SELECT * FROM CUSTOMERS INNER JOIN ORDERS ON ORDERS.CUST_ID = CUSTOMERS.ID;
We get the following output −
ID | NAME | ADDRESS | OID | DATE | CUST_ID | AMOUNT |
---|---|---|---|---|---|---|
3 | Kaushik | Kota | 102 | 2009-10-08 00:00:00 | 3 | 3000.00 |
3 | Kaushik | Kota | 100 | 2009-10-08 00:00:00 | 3 | 1500.00 |
2 | Khilan | Delhi | 101 | 2009-11-20 00:00:00 | 2 | 1560.00 |
4 | Chaitali | Mumbai | 103 | 2008-05-20 00:00:00 | 4 | 2060.00 |
To obtain information about this query's execution, you can use the EXPLAIN ANALYZE statement as follows−
EXPLAIN ANALYZE SELECT * FROM CUSTOMERS INNER JOIN ORDERS ON ORDERS.CUST_ID = CUSTOMERS.ID\G;
The result produced is as follows −
*************************** 1. row *************************** EXPLAIN: -> Nested loop inner join (cost=2.05 rows=4) (actual time=0.117..0.145 rows=4 loops=1) -> Table scan on ORDERS (cost=0.65 rows=4) (actual time=0.078..0.095 rows=4 loops=1) -> Single-row index lookup on CUSTOMERS using PRIMARY (ID=orders.CUST_ID) (cost=0.28 rows=1) (actual time=0.010..0.010 rows=1 loops=4) 1 row in set (0.00 sec)
The explain_type Option
You can also specify the format in which you want to retrieve the information using the explain_type option. It allows you to choose between TRADITIONAL, JSON, and TREE formats. These different formats provide the same information but in a more structured manner for your analysis.
Example
In here, we are retrieving the information in TREE format using the explain_type option −
EXPLAIN ANALYZE FORMAT = TREE SELECT * FROM CUSTOMERS INNER JOIN ORDERS ON ORDERS.CUST_ID = CUSTOMERS.ID;
Following is the output obtained −
-> Nested loop inner join (cost=2.05 rows=4) (actual time=0.111..0.136 rows=4 loops=1) -> Table scan on ORDERS (cost=0.65 rows=4) (actual time=0.073..0.089 rows=4 loops=1) -> Single-row index lookup on CUSTOMERS using PRIMARY (ID=orders.CUST_ID)
Now, we are retrieving information in JSON format −
EXPLAIN FORMAT = JSON SELECT * FROM CUSTOMERS;
After executing the above code, we get the following output −
{ "query_block": { "select_id": 1, "cost_info": { "query_cost": "0.95" }, "table": { "table_name": "CUSTOMERS", "access_type": "ALL", "rows_examined_per_scan": 7, "rows_produced_per_join": 7, "filtered": "100.00", "cost_info": { "read_cost": "0.25", "eval_cost": "0.70", "prefix_cost": "0.95", "data_read_per_join": "1K" }, "used_columns": [ "ID", "NAME", "ADDRESS" ] } } }