Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (721)

Search Parameters:
Keywords = ion-selective membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1390 KiB  
Article
Pollution Monitoring via Potentiometric Membrane Sensors for the Determination of Chlorpromazine Hydrochloride in the Presence of Its Main Photo-Degradation Products in River Water
by Sherif A. Abdel-Gawad and Ali Altharawi
Chemosensors 2024, 12(11), 240; https://doi.org/10.3390/chemosensors12110240 - 17 Nov 2024
Viewed by 213
Abstract
The utilization of membrane sensors for the monitoring and determination of pharmaceutical environmental pollutants has emerged as a crucial objective in recent years. Given the extensive use of chlorpromazine hydrochloride (CPZ) in medicine, its presence in the environment, particularly in surface water such [...] Read more.
The utilization of membrane sensors for the monitoring and determination of pharmaceutical environmental pollutants has emerged as a crucial objective in recent years. Given the extensive use of chlorpromazine hydrochloride (CPZ) in medicine, its presence in the environment, particularly in surface water such as rivers, is highly probable. Prolonged exposure of river water to sunlight and the photo-degradability of CPZ may enhance its photo-degradation. For the purpose of measuring CPZ in the presence of its primary photo-degradants, two sensitive and selective membrane electrodes were developed. These were synthesized utilizing two ion-pairing agents: sodium tetraphenylborate (TPB) and phosphotungstic acid (PTA). The electrodes exhibited a linear range that extended from 1 × 10−6 M to 1 × 10−2 M. The membrane electrodes of CPZ-TPB and CPZ-PTA exhibited slopes of 59.90 ± 0.60 mV/decade and 58.90 ± 0.80 mV/decade, respectively. The sensors mentioned above showed acceptable performance in a pH range of 2.0 to 6.0. All test parameters were optimized to provide superior electrochemical performance. The fabricated membranes were effectively employed to sensitively quantify CPZ in the presence of its principal photodegradants. The developed sensors were successfully employed to quantify CPZ in river water samples without necessitating pre-treatment procedures. Full article
Show Figures

Figure 1

20 pages, 306 KiB  
Article
Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions
by Hong Li, Zhantao Li, Chaohong Pan, Jie Song and Mingji Zhang
Axioms 2024, 13(11), 790; https://doi.org/10.3390/axioms13110790 (registering DOI) - 15 Nov 2024
Viewed by 321
Abstract
We focus on higher-order matched asymptotic expansions of a one-dimensional classical Poisson–Nernst–Planck system for ionic flow through membrane channels with two oppositely charged ion species under relaxed electroneutrality boundary conditions. Of particular interest are the current–voltage (I–V) relations, which are used to characterize [...] Read more.
We focus on higher-order matched asymptotic expansions of a one-dimensional classical Poisson–Nernst–Planck system for ionic flow through membrane channels with two oppositely charged ion species under relaxed electroneutrality boundary conditions. Of particular interest are the current–voltage (I–V) relations, which are used to characterize the two most relevant biological properties of ion channels—permeation and selectivity—experimentally. Our result shows that, up to the second order in ε=λ/r, where λ is the Debye length and r is the characteristic radius of the channel, the cubic I–V relation has either three distinct real roots or a unique real root with a multiplicity of three, which sensitively depends on the boundary layers because of the relaxation of the electroneutrality boundary conditions. This indicates more rich dynamics of ionic flows under our more realistic setups and provides a better understanding of the mechanism of ionic flows through membrane channels. Full article
19 pages, 2299 KiB  
Article
A Simple Preparation of Crosslinked, Highly Alkaline Diallyldimethylammonium Hydroxide Hydrogel Particles via Inverse Static Anion Exchange
by Tim B. Mrohs and Oliver Weichold
Gels 2024, 10(11), 743; https://doi.org/10.3390/gels10110743 (registering DOI) - 15 Nov 2024
Viewed by 179
Abstract
Highly alkaline hydrogels are gaining increasing attention in building materials research. Specifically, cationic alkaline hydrogels based on diallyldimethylammonium hydroxide (DADMAOH) as the monomer have been effectively used to seal water-bearing cracks or serve as coupling media for electrochemical chloride extraction. However, the residual [...] Read more.
Highly alkaline hydrogels are gaining increasing attention in building materials research. Specifically, cationic alkaline hydrogels based on diallyldimethylammonium hydroxide (DADMAOH) as the monomer have been effectively used to seal water-bearing cracks or serve as coupling media for electrochemical chloride extraction. However, the residual halogen content and challenges in scaling up monomer production have hindered broader application. Attempts to use a commercially available cation-selective membrane for ion exchange achieved up to 90% chloride-to-hydroxide switch, but the approach proved ineffective due to significant monomer decomposition during the process. By contrast, neutral gels and gel particles can be readily prepared from diallyldimethylammonium chloride (DADMAC) in large quantities and with a wide range of compositions. It is demonstrated here that these neutral gel particles undergo inverse static anion exchange when suspended in NaOH solution, generating DADMAOH particles with residual halide contents of <0.3%, without the need for ion-selective or dialysis membranes. This corresponds to an up to 100-fold reduction in residual chloride content compared to particles produced directly from alkaline monomer solutions, thereby significantly enhancing the efficiency of hydroxide ion release. The swelling behaviour of the particles is primarily influenced by the initial monomer concentration, while conductivity remains largely unaffected, indicating that charge transport occurs mainly along the particle surface. Despite the pronounced increase in swelling with decreasing particle radii, the specific conductivity of 2.8 Ω⁻¹ m⁻¹ is still sufficient for their use as coupling media in concrete applications. In summary, the alkaline particles prepared via inverse static anion exchange meet all necessary requirements for building materials applications, offering a broader range of tuneable properties and greater ease of production compared to gels or particles derived from DADMAOH. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

13 pages, 2472 KiB  
Article
In Situ Potentiometric Monitoring of Nitrate Removal from Aqueous Solution by Activated Carbon and Ion Exchange Resin
by José Manuel Olmos, Lucía Gil and Joaquín Ángel Ortuño
Micromachines 2024, 15(11), 1366; https://doi.org/10.3390/mi15111366 - 12 Nov 2024
Viewed by 370
Abstract
A nitrate selective electrode was used for real-time in situ potentiometric monitoring of a batch nitrate removal process using activated carbon and ion exchange resin. A plasticized polymeric membrane consisting of polyvinyl chloride, 2-nitrophenyl octyl ether and tridodecyl methyl ammonium chloride was incorporated [...] Read more.
A nitrate selective electrode was used for real-time in situ potentiometric monitoring of a batch nitrate removal process using activated carbon and ion exchange resin. A plasticized polymeric membrane consisting of polyvinyl chloride, 2-nitrophenyl octyl ether and tridodecyl methyl ammonium chloride was incorporated into an ion-selective electrode body. First, the dynamic potential response of the electrode to nitrate was investigated. Two commercial activated carbons with different physical properties were then tested. Nitrate removal with these carbons was monitored potentiometrically using several nitrate concentrations. The extreme turbidity of the solutions was not a drawback during potentiometric monitoring of the process, which is a clear advantage over other methods such as optical monitoring. The potential versus time recordings were converted into nitrate concentration versus time plots, which were evaluated with different adsorption kinetic models. A pseudo-second order kinetic model for nitrate adsorption on both activated carbons was found to fit the experimental data very well. The values of the kinetic parameters were very different between the two activated carbons. The proposed methodology was also satisfactorily applied to the study of nitrate removal by an ion exchange resin. In this case, the experimental results clearly follow a pseudo-first order kinetic model. Potential applications of the proposed methodology for monitoring nitrate removal in real water samples are discussed. Full article
Show Figures

Figure 1

16 pages, 3178 KiB  
Article
Engineering Ion Affinity of Zr-MOF Hybrid PDMS Membranes for the Selective Separation of Na+/Ca2+
by Ahmed S. Abou-Elyazed, Xiaolin Li and Jing Meng
Molecules 2024, 29(22), 5297; https://doi.org/10.3390/molecules29225297 - 9 Nov 2024
Viewed by 712
Abstract
Ion-selective separation, especially Na+/Ca2+ separation, is of significant importance in the realms of biomimetic research and the fabrication of biomimetic devices, underscoring the pivotal role that sodium and calcium ions play in cellular metabolism. However, the analogous ionic radii and [...] Read more.
Ion-selective separation, especially Na+/Ca2+ separation, is of significant importance in the realms of biomimetic research and the fabrication of biomimetic devices, underscoring the pivotal role that sodium and calcium ions play in cellular metabolism. However, the analogous ionic radii and charge densities shared by sodium and calcium ions significantly impede their effective discrimination, presenting formidable challenges for the precise engineering of ion separation materials, such as separation membranes. In this study, a polydimethylsiloxane (PDMS) separation membrane hybridized with zirconium-based metal–organic frameworks (UiO-66, UiO-66-NO2 and UiO-66-NH2) was constructed. Through the meticulous design of the MOF functional groups, the material’s affinity for specific ions was modulated, thereby achieving efficient Na+/Ca2+ separation. Notably, the PDMS integrated with amino-modified Zr-MOF exhibited an efficacious selective separation of Na+ and Ca2+ ions. The interaction between the amino group of UiO-66-NH2 and Ca2+ gave rise to the observed superior selectivity toward Ca2+ cations and enhanced separation efficiencies of up to 64% compared to pristine PDMS for UiO-66-NH2-embedded membranes. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

11 pages, 1416 KiB  
Review
Sodium-Selective Channelrhodopsins
by Ariel Coli, Shiqiang Gao and Lars Kaestner
Cells 2024, 13(22), 1852; https://doi.org/10.3390/cells13221852 - 8 Nov 2024
Viewed by 360
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels originally discovered in algae and are commonly used in neuroscience for controlling the electrical activity of neurons with high precision. Initially-discovered ChRs were non-selective cation channels, allowing the flow of multiple ions, such as Na+, [...] Read more.
Channelrhodopsins (ChRs) are light-gated ion channels originally discovered in algae and are commonly used in neuroscience for controlling the electrical activity of neurons with high precision. Initially-discovered ChRs were non-selective cation channels, allowing the flow of multiple ions, such as Na+, K+, H+, and Ca2+, leading to membrane depolarization and triggering action potentials in neurons. As the field of optogenetics has evolved, ChRs with more specific ion selectivity were discovered or engineered, offering more precise optogenetic manipulation. This review highlights the natural occurrence and engineered variants of sodium-selective channelrhodopsins (NaChRs), emphasizing their importance in optogenetic applications. These tools offer enhanced specificity in Na+ ion conduction, reducing unwanted effects from other ions, and generating strong depolarizing currents. Some of the NaChRs showed nearly no desensitization upon light illumination. These characteristics make them particularly useful for experiments requiring robust depolarization or direct Na+ ion manipulation. The review further discusses the molecular structure of these channels, recent advances in their development, and potential applications, including a proposed drug delivery system using NaChR-expressing red blood cells that could be triggered to release therapeutic agents upon light activation. This review concludes with a forward-looking perspective on expanding the use of NaChRs in both basic research and clinical settings. Full article
(This article belongs to the Section Cellular Biophysics)
Show Figures

Figure 1

19 pages, 1676 KiB  
Review
The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance
by Martin Ayala-Claveria, Carlos Carlesi, Julieta Puig and Gianni Olguin
Processes 2024, 12(11), 2320; https://doi.org/10.3390/pr12112320 - 23 Oct 2024
Viewed by 565
Abstract
The health risks associated with the presence of heavy metals in drinking water can be severe. To address this issue, membrane separation technology is one of the consolidated alternatives. Inorganic, porous membranes were found in applications where low energy consumption is highly desirable. [...] Read more.
The health risks associated with the presence of heavy metals in drinking water can be severe. To address this issue, membrane separation technology is one of the consolidated alternatives. Inorganic, porous membranes were found in applications where low energy consumption is highly desirable. The selectivity of these membranes is attained by functionalisation. Graphene oxide functionalised membrane technology is promising for removing heavy metal ions. This work summarises, discusses and presents the relationship between adsorption and overall membrane separation process performance for heavy metal ions removal from wastewater when a graphene oxide-functionalised membrane is used. The separation performance depends on the hydrophobic interactions of the membrane and the solute. The electrostatic interaction between the negatively charged membrane surface and positively charged metal ions facilitates the adsorption, leading to the rejection of these metal ions. The influences of the chemical nature of the modifiers of graphene oxide layers are highlighted. Full article
(This article belongs to the Special Issue Technological Processes for Chemical and Related Industries)
Show Figures

Figure 1

16 pages, 7768 KiB  
Article
Genome-Wide Identification of the Cyclic Nucleotide-Gated Ion Channel Gene Family and Expression Profiles Under Low-Temperature Stress in Luffa cylindrica L.
by Jianting Liu, Yuqian Wang, Lijuan Peng, Mindong Chen, Xinru Ye, Yongping Li, Zuliang Li, Qingfang Wen and Haisheng Zhu
Int. J. Mol. Sci. 2024, 25(20), 11330; https://doi.org/10.3390/ijms252011330 - 21 Oct 2024
Viewed by 746
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) are cell membrane channel proteins for calcium ions. They have been reported to play important roles in survival and in the responses to environmental factors in various plants. However, little is known about the CNGC family and its [...] Read more.
Cyclic nucleotide-gated ion channels (CNGCs) are cell membrane channel proteins for calcium ions. They have been reported to play important roles in survival and in the responses to environmental factors in various plants. However, little is known about the CNGC family and its functions in luffa (Luffa cylindrica L.). In this study, a bioinformatics-based method was used to identify members of the CNGC gene family in L. cylindrica. In total, 20 LcCNGCs were detected, and they were grouped into five subfamilies (I, II, Ⅲ, IV-a, and IV-b) in a phylogenetic analysis with CNGCs from Arabidopsis thaliana (20 AtCNGCs) and Momordica charantia (17 McCNGCs). The 20 LcCNGC genes were unevenly distributed on 11 of the 13 chromosomes in luffa, with none on Chromosomes 1 and 5. The members of each subfamily encoded proteins with highly conserved functional domains. An evolutionary analysis of CNGCs in luffa revealed three gene losses and a motif deletion. An examination of gene replication events during evolution indicated that two tandemly duplicated gene pairs were the primary driving force behind the evolution of the LcCNGC gene family. PlantCARE analyses of the LcCNGC promoter regions revealed various cis-regulatory elements, including those responsive to plant hormones (abscisic acid, methyl jasmonate, and salicylic acid) and abiotic stresses (light, drought, and low temperature). The presence of these cis-acting elements suggested that the encoded CNGC proteins may be involved in stress responses, as well as growth and development. Transcriptome sequencing (RNA-seq) analyses revealed tissue-specific expression patterns of LcCNGCs in various plant parts (roots, stems, leaves, flowers, and fruit) and the upregulation of some LcCNGCs under low-temperature stress. To confirm the accuracy of the RNA-seq data, 10 cold-responsive LcCNGC genes were selected for verification by quantitative real-time polymerase chain reaction (RT-qPCR) analysis. Under cold conditions, LcCNGC4 was highly upregulated (>50-fold increase in its transcript levels), and LcCNGC3, LcCNGC6, and LcCNGC13 were upregulated approximately 10-fold. Our findings provide new information about the evolution of the CNGC family in L. cylindrica and provide insights into the functions of the encoded CNGC proteins. Full article
(This article belongs to the Special Issue Transcription Factors in Plant Gene Expression Regulation)
Show Figures

Figure 1

16 pages, 2049 KiB  
Article
Potentiometric Electronic Tongue for the Evaluation of Multiple-Unit Pellet Sprinkle Formulations of Rosuvastatin Calcium
by Patrycja Ciosek-Skibińska, Krzysztof Cal, Daniel Zakowiecki and Joanna Lenik
Materials 2024, 17(20), 5016; https://doi.org/10.3390/ma17205016 - 14 Oct 2024
Viewed by 668
Abstract
Sprinkle formulations represent an interesting genre of medicinal products. A frequent problem, however, is the need to mask the unpleasant taste of these drug substances. In the present work, we propose the use of a novel sensor array based on solid-state ion-selective electrodes [...] Read more.
Sprinkle formulations represent an interesting genre of medicinal products. A frequent problem, however, is the need to mask the unpleasant taste of these drug substances. In the present work, we propose the use of a novel sensor array based on solid-state ion-selective electrodes to evaluate the taste-masking efficiency of rosuvastatin (ROS) sprinkle formulations. Eight Multiple Unit Pellet Systems (MUPSs) were analyzed at two different doses (API_50) and (API_10), as well as pure Active Pharmaceutical Ingredient (API) as a bitter standard. Calcium phosphate-based starter pellets were coated with the mixture containing rosuvastatin. Some of them were additionally coated with hydroxypropyl methylcellulose, which was intended to separate the bitter substance and prevent it from coming into contact with the taste buds. The sensor array consisted of 16 prepared sensors with a polymer membrane that had a different selectivity towards rosuvastatin calcium. The main analytical parameters (sensitivity, selectivity, response time, pH dependence of potential, drift of potential, lifetime) of the constructed ion-selective electrodes sensitive for rosuvastatin were determined. The signals from the sensors array recorded during the experiments were processed using Principal Component Analysis (PCA). The results obtained, i.e., the chemical images of the pharmaceutical samples, indicated that the electronic tongue composed of the developed solid-state electrodes provided respective attributes as sensor signals, enabling both of various kinds of ROS pellets to be distinguished and their similarity to ROS bitterness standards to be tested. Full article
Show Figures

Figure 1

13 pages, 2499 KiB  
Proceeding Paper
Recent Advances in Lithium Extraction
by Arbee Chrystel Alera, Juan Paulo Benitez, Richard Joseph Fernandez, Carl Khleann Pascual, Faith Policarpio and Edgar Clyde Repato Lopez
Eng. Proc. 2024, 67(1), 52; https://doi.org/10.3390/engproc2024067052 - 24 Sep 2024
Cited by 1 | Viewed by 3089
Abstract
The increasing global demand for lithium, driven by its critical role in battery technology and nuclear applications, necessitates efficient and sustainable extraction methods. Lithium, primarily sourced from brine pools, igneous rocks, and low-grade ores, is extracted through various techniques including ion exchange, precipitation, [...] Read more.
The increasing global demand for lithium, driven by its critical role in battery technology and nuclear applications, necessitates efficient and sustainable extraction methods. Lithium, primarily sourced from brine pools, igneous rocks, and low-grade ores, is extracted through various techniques including ion exchange, precipitation, electrolysis, and adsorption. This paper reviews the current state of lithium extraction, focusing on the diverse methodologies employed to meet the burgeoning demand. Extraction methods exploit the solubilities of salts in brine water, employing techniques like liquid–liquid extraction. Despite the effectiveness, challenges arise from the similar characteristics of lithium and other constituents. Adsorption methods utilize lithium-selective adsorbents, requiring stability and adaptability under varying conditions. Membrane processes, such as electrodialysis and nanofiltration, offer the potential for energy-efficient, continuous lithium recovery. Electrochemical processes facilitate lithium intercalation and deintercalation, emphasizing the need for electrode optimization. The review further delves into emerging technologies, like electrosorption and ionic pumps, highlighting their roles in lithium recovery. Challenges such as temperature dependency, impurity influence, and initial concentration are discussed, underscoring their impact on lithium recovery efficiency. Finally, this paper identifies research gaps and future directions, emphasizing the need for cost-effective, high-performance electrode materials and systems. It concludes that enhancing lithium recovery and separation techniques, particularly in electrochemical Li extraction, is crucial for sustainable lithium production in response to global demand. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

64 pages, 16567 KiB  
Review
Composite Track-Etched Membranes: Synthesis and Multifaced Applications
by Anastassiya A. Mashentseva, Duygu S. Sutekin, Saniya R. Rakisheva and Murat Barsbay
Polymers 2024, 16(18), 2616; https://doi.org/10.3390/polym16182616 - 15 Sep 2024
Cited by 1 | Viewed by 1082
Abstract
Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of [...] Read more.
Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of CTeMs. By incorporating functional phases such as metal nanoparticles and conductive nanostructures, CTeMs exhibit improved performance in various domains. In environmental remediation, CTeMs effectively capture and decompose pollutants, offering both separation and detoxification. In sensor technology, they have the potential to provide high sensitivity and selectivity, essential for accurate detection in medical and environmental applications. For energy storage, CTeMs may be promising in enhancing ion transport, flexibility, and mechanical stability, addressing key issues in battery and supercapacitor performance. Biomedical applications may benefit from the versality of CTeMs, potentially supporting advanced drug delivery systems and tissue engineering scaffolds. Despite their numerous advantages, challenges remain in the fabrication and scalability of CTeMs, requiring sophisticated techniques and meticulous optimization. Future research directions include the development of cost-effective production methods and the exploration of new materials to further enhance the capabilities of CTeMs. This review underscores the transformative potential of CTeMs across various applications and highlights the need for continued innovation to fully realize their benefits. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

13 pages, 3663 KiB  
Article
Polyethyleneimine Modified Two-Dimensional GO/MXene Composite Membranes with Enhanced Mg2+/Li+ Separation Performance for Salt Lake Brine
by Jun Wang, Andong Wang, Jiayuan Liu, Qiang Niu, Yijia Zhang, Ping Liu, Chengwen Liu, Hongshan Wang, Xiangdong Zeng and Guangyong Zeng
Molecules 2024, 29(18), 4326; https://doi.org/10.3390/molecules29184326 - 12 Sep 2024
Viewed by 599
Abstract
As global demand for renewable energy and electric vehicles increases, the need for lithium has surged significantly. Extracting lithium from salt lake brine has become a cutting-edge technology in lithium resource production. In this study, two-dimensional (2D) GO/MXene composite membranes were fabricated using [...] Read more.
As global demand for renewable energy and electric vehicles increases, the need for lithium has surged significantly. Extracting lithium from salt lake brine has become a cutting-edge technology in lithium resource production. In this study, two-dimensional (2D) GO/MXene composite membranes were fabricated using pressure-assisted filtration with a polyethyleneimine (PEI) coating, resulting in positively charged PEI-GO/MXene membranes. These innovative membranes, taking advantage of the synergistic effects of interlayer channel sieving and the Donnan effect, demonstrated excellent performance in Mg2+/Li+ separation with a mass ratio of 20 (Mg2+ rejection = 85.3%, Li+ rejection = 16.7%, SLi,Mg = 5.7) in simulated saline lake brine. Testing on actual salt lake brine in Tibet, China, confirmed the composite membrane’s potential for effective Mg2+/Li+ separation. In the actual brine test with high concentration, Mg2+/Li+ after membrane separation is 2.2, which indicates that the membrane can significantly reduce the concentration of Mg2+ in the brine. Additionally, the PEI-GO/MXene composite membrane demonstrated strong anti-swelling properties and effective divalent ion rejection. This research presents an innovative approach to advance the development of 2D membranes for the selective removal of Mg2+ and Li+ from salt lake brine. Full article
(This article belongs to the Special Issue Two-Dimensional Materials: From Synthesis to Applications)
Show Figures

Graphical abstract

14 pages, 3479 KiB  
Article
Development of a Bitterness Sensor Using Partially Dissociated Amine Compounds
by Yuyang Guo, Xiao Wu, Hidekazu Ikezaki and Kiyoshi Toko
Sensors 2024, 24(17), 5553; https://doi.org/10.3390/s24175553 - 28 Aug 2024
Viewed by 553
Abstract
This study focused on developing an advanced bitterness sensor designed to minimize interference from common anions such as nitrate (NO3) and iodide (I) by incorporating partially dissociated amine compounds into the sensor membrane. The conventional bitter sensor (C00) [...] Read more.
This study focused on developing an advanced bitterness sensor designed to minimize interference from common anions such as nitrate (NO3) and iodide (I) by incorporating partially dissociated amine compounds into the sensor membrane. The conventional bitter sensor (C00) uses fully dissociated quaternary ammonium salt tetradecyl ammonium bromide (TDAB), which typically exhibits high responses to these anions, leading to inaccurate bitterness assessments. To address this issue, we explored the use of three partially dissociated amines—oleylamine (OAm), dioctadecylamine (DODA), and tridodecylamine (TDA)—as lipids in the membrane components. We fabricated sensor membranes and tested their ion selectivity, interference resistance to anion, and sensitivity to iso-alpha acids (IAAs), representative bitter compounds in beer. The results showed that the membranes with partially dissociated amines significantly reduced anion interference. Notably, the sensitivity of the TDA membrane to IAAs was 80.4 mV/dec in concentration, exceeding the 68.5 mV/dec of the TDAB membrane. This enhanced sensitivity, coupled with reduced anion interference, reveals a novel property of partially dissociated lipids in taste sensors, distinguishing them from fully dissociated lipids. These findings pave the way for the development of sensors that can accurately assess a bitter taste and have potential applications in the food and beverage industry. Full article
(This article belongs to the Special Issue Electrochemical Sensors in the Food Industry)
Show Figures

Figure 1

19 pages, 4650 KiB  
Review
TRPA1-Related Diseases and Applications of Nanotherapy
by Dongki Yang
Int. J. Mol. Sci. 2024, 25(17), 9234; https://doi.org/10.3390/ijms25179234 - 26 Aug 2024
Viewed by 798
Abstract
Transient receptor potential (TRP) channels, first identified in Drosophila in 1969, are multifunctional ion channels expressed in various cell types. Structurally, TRP channels consist of six membrane segments and are classified into seven subfamilies. Transient receptor potential ankyrin 1 (TRPA1), the first member [...] Read more.
Transient receptor potential (TRP) channels, first identified in Drosophila in 1969, are multifunctional ion channels expressed in various cell types. Structurally, TRP channels consist of six membrane segments and are classified into seven subfamilies. Transient receptor potential ankyrin 1 (TRPA1), the first member of the TRPA family, is a calcium ion affinity non-selective cation channel involved in sensory transduction and responds to odors, tastes, and chemicals. It also regulates temperature and responses to stimuli. Recent studies have linked TRPA1 to several disorders, including chronic pain, inflammatory diseases, allergies, and respiratory problems, owing to its activation by environmental toxins. Mutations in TRPA1 can affect the sensory nerves and microvasculature, potentially causing nerve pain and vascular problems. Understanding the function of TRPA1 is important for the development of treatments for these diseases. Recent developments in nanomedicines that target various ion channels, including TRPA1, have had a significant impact on disease treatment, providing innovative alternatives to traditional disease treatments by overcoming various adverse effects. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Figure 1

16 pages, 2634 KiB  
Article
Derivatives of Pyrimidine Nucleosides Affect Artificial Membranes Enriched with Mycobacterial Lipids
by Olga S. Ostroumova, Svetlana S. Efimova, Polina D. Zlodeeva, Liudmila A. Alexandrova, Dmitry A. Makarov, Elena S. Matyugina, Vera A. Sokhraneva, Anastasia L. Khandazhinskaya and Sergey N. Kochetkov
Pharmaceutics 2024, 16(9), 1110; https://doi.org/10.3390/pharmaceutics16091110 - 23 Aug 2024
Viewed by 638
Abstract
The mechanisms of action of pyrimidine nucleoside derivatives on model lipid membranes of various compositions were studied. A systematic analysis of the tested agents’ effects on the membrane physicochemical properties was performed. Differential scanning microcalorimetry data indicated that the ability of nucleoside derivatives [...] Read more.
The mechanisms of action of pyrimidine nucleoside derivatives on model lipid membranes of various compositions were studied. A systematic analysis of the tested agents’ effects on the membrane physicochemical properties was performed. Differential scanning microcalorimetry data indicated that the ability of nucleoside derivatives to disorder membrane lipids depended on the types of nucleoside bases and membrane-forming lipids. The 5′-norcarbocyclic uracil derivatives were found to be ineffective, while N4-alkylcytidines demonstrated the most pronounced effects, significantly decreasing the dipalmitoylphosphocholine melting temperature and cooperativity of phase transition. The elongation of hydrophobic acyl radicals potentiated the disordering action of N4-alkylcytidines, while an increase in hydrophilicity due to replacing deoxyribose with ribose inhibited this effect. The ability of compounds to form transmembrane pores was also tested. It was found that 5-alkyluridines produced single, ion-permeable pores in phosphatidylglycerol membranes, and that methoxy-mycolic acid and trehalose monooleate potentiated the pore-forming activity of alkyloxymethyldeoxyuridines. The results obtained open up perspectives for the development of innovative highly selective anti-tuberculosis agents, which may be characterized by a low risk of developing drug resistance due to the direct action on the membranes of the pathogen. Full article
(This article belongs to the Special Issue Bioactive Agents for the Treatment against Tuberculosis)
Show Figures

Graphical abstract

Back to TopTop