default search action
Moo K. Chung
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j35]Anass B. El-Yaagoubi, Moo K. Chung, Hernando Ombao:
Dynamic topological data analysis: a novel fractal dimension-based testing framework with application to brain signals. Frontiers Neuroinformatics 18 (2024) - [c77]D. Vijay Anand, Moo K. Chung:
Hodge-Decomposition of Brain Networks. ISBI 2024: 1-5 - [c76]Anass B. El-Yaagoubi, Moo K. Chung, Hernando Ombao:
Topological Analysis of Seizure-Induced Changes in Brain Hierarchy Through Effective Connectivity. TGI3@MICCAI 2024: 134-145 - [i18]Jinghan Huang, Qiufeng Chen, Yijun Bian, Pengli Zhu, Nanguang Chen, Moo K. Chung, Anqi Qiu:
Advancing Graph Neural Networks with HL-HGAT: A Hodge-Laplacian and Attention Mechanism Approach for Heterogeneous Graph-Structured Data. CoRR abs/2403.06687 (2024) - 2023
- [j34]Anass B. El-Yaagoubi, Moo K. Chung, Hernando Ombao:
Topological Data Analysis for Multivariate Time Series Data. Entropy 25(11): 1509 (2023) - [j33]Anass B. El-Yaagoubi, Moo K. Chung, Hernando Ombao:
Statistical inference for dependence networks in topological data analysis. Frontiers Artif. Intell. 6 (2023) - [j32]Moo K. Chung, Camille Garcia-Ramos, Felipe Branco De Paiva, Jedidiah Mathis, Vivek Prabhakaran, Veena A. Nair, Mary E. Meyerand, Bruce P. Hermann, Jeffrey R. Binder, Aaron F. Struck:
Unified topological inference for brain networks in temporal lobe epilepsy using the Wasserstein distance. NeuroImage 284: 120436 (2023) - [j31]D. Vijay Anand, Moo K. Chung:
Hodge Laplacian of Brain Networks. IEEE Trans. Medical Imaging 42(5): 1563-1573 (2023) - [c75]Jinghan Huang, Moo K. Chung, Anqi Qiu:
Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data. IPMI 2023: 278-290 - [c74]Zijian Chen, Soumya Das, Moo K. Chung:
Sulcal Pattern Matching with the Wasserstein Distance. ISBI 2023: 1-5 - [c73]Joonhyuk Park, Yechan Hwang, Minjeong Kim, Moo K. Chung, Guorong Wu, Won Hwa Kim:
Convolving Directed Graph Edges via Hodge Laplacian for Brain Network Analysis. MICCAI (5) 2023: 789-799 - [i17]Jinghan Huang, Moo K. Chung, Anqi Qiu:
Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data. CoRR abs/2302.09323 (2023) - 2022
- [c72]Yuan Wang, Moo K. Chung, Julius Fridriksson:
Spectral Permutation Test on Persistence Diagrams. ICASSP 2022: 1461-1465 - [c71]Sixtus Dakurah, D. Vijay Anand, Zijian Chen, Moo K. Chung:
Modelling Cycles in Brain Networks with the Hodge Laplacian. MICCAI (1) 2022: 326-335 - [i16]Moo K. Chung, Shih-Gu Huang, Ian C. Carroll, Vince D. Calhoun, H. Hill Goldsmith:
Dynamic Persistent Homology for Brain Networks via Wasserstein Graph Clustering. CoRR abs/2201.00087 (2022) - 2021
- [j30]Shih-Gu Huang, Moo K. Chung, Anqi Qiu:
Revisiting convolutional neural network on graphs with polynomial approximations of Laplace-Beltrami spectral filtering. Neural Comput. Appl. 33(20): 13693-13704 (2021) - [j29]Shih-Gu Huang, Moo K. Chung, Anqi Qiu, Alzheimer's Disease Neuroimaging Initiative:
Fast mesh data augmentation via Chebyshev polynomial of spectral filtering. Neural Networks 143: 198-208 (2021) - [c70]Moo K. Chung, Hernando C. Ombao:
Lattice Paths for Persistent Diagrams. iMIMIC/TDA4MedicalData@MICCAI 2021: 77-86 - [c69]Tananun Songdechakraiwut, Li Shen, Moo K. Chung:
Topological Learning and Its Application to Multimodal Brain Network Integration. MICCAI (2) 2021: 166-176 - [i15]Moo K. Chung, Alexander Smith, Gary Shiu:
Reviews: Topological Distances and Losses for Brain Networks. CoRR abs/2102.08623 (2021) - [i14]Moo K. Chung, Hernando C. Ombao:
Topological Data Analysis of COVID-19 Virus Spike Proteins. CoRR abs/2105.00351 (2021) - 2020
- [j28]Shih-Gu Huang, Ilwoo Lyu, Anqi Qiu, Moo K. Chung:
Fast Polynomial Approximation of Heat Kernel Convolution on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis. IEEE Trans. Medical Imaging 39(6): 2201-2212 (2020) - [c68]Arman P. Kulkarni, Moo K. Chung, Barbara B. Bendlin, Vivek Prabhakaran:
Investigating Heritability Across Resting State Brain Networks Via Heat Kernel Smoothing on Persistence Diagrams. ISBI Workshops 2020: 1-4 - [c67]Tananun Songdechakraiwut, Moo K. Chung:
Dynamic Topological Data Analysis for Functional Brain Signals. ISBI Workshops 2020: 1-4 - [c66]Andrey Gritsenko, Martin A. Lindquist, Moo K. Chung:
Twin Classification in Resting-State Brain Connectivity. ISBI 2020: 1391-1394 - [i13]Moo K. Chung:
Gaussian kernel smoothing. CoRR abs/2007.09539 (2020) - [i12]Moo K. Chung:
Diffusion Equations on Graphs. CoRR abs/2007.13742 (2020) - [i11]Moo K. Chung:
Introduction to logistic regression. CoRR abs/2008.13567 (2020) - [i10]Shih-Gu Huang, Moo K. Chung, Anqi Qiu:
Fast Mesh Data Augmentation via Chebyshev Polynomial of Spectral filtering. CoRR abs/2010.02811 (2020) - [i9]Shih-Gu Huang, Moo K. Chung, Anqi Qiu, Alzheimer's Disease Neuroimaging Initiative:
Revisiting convolutional neural network on graphs with polynomial approximations of Laplace-Beltrami spectral filtering. CoRR abs/2010.13269 (2020) - [i8]Tananun Songdechakraiwut, Moo K. Chung:
Topological Learning for Brain Networks. CoRR abs/2012.00675 (2020)
2010 – 2019
- 2019
- [j27]Mengqi Xing, Hyekyoung Lee, Zachery Morrissey, Moo K. Chung, K. Luan Phan, Heide Klumpp, Alex D. Leow, Olusola Ajilore:
Altered dynamic electroencephalography connectome phase-space features of emotion regulation in social anxiety. NeuroImage 186: 338-349 (2019) - [c65]Hyekyoung Lee, Moo K. Chung, Hongyoon Choi, Hyejin Kang, Seunggyun Ha, Yu Kyeong Kim, Dong Soo Lee:
Harmonic Holes as the Submodules of Brain Network and Network Dissimilarity. CTIC 2019: 110-122 - [c64]Shih-Gu Huang, Moo K. Chung, Ian C. Carroll, H. Hill Goldsmith:
Dynamic Functional Connectivity Using Heat Kernel. DSW 2019: 222-226 - [c63]Yuan Wang, Hernando C. Ombao, Moo K. Chung:
Statistical Persistent Homology of Brain Signals. ICASSP 2019: 1125-1129 - [c62]Moo K. Chung, Shih-Gu Huang, Andrey Gritsenko, Li Shen, Hyekyoung Lee:
Statistical Inference on the Number of Cycles in Brain Networks. ISBI 2019: 113-116 - [c61]Shih-Gu Huang, Andrey Gritsenko, Martin A. Lindquist, Moo K. Chung:
Circular Pearson Correlation Using Cosine Series Expansion. ISBI 2019: 1774-1777 - [c60]Moo K. Chung, Linhui Xie, Shih-Gu Huang, Yixian Wang, Jingwen Yan, Li Shen:
Rapid Acceleration of the Permutation Test via Transpositions. CNI@MICCAI 2019: 42-53 - [c59]Shih-Gu Huang, Ilwoo Lyu, Anqi Qiu, Moo K. Chung:
Fast Polynomial Approximation to Heat Diffusion in Manifolds. MICCAI (4) 2019: 48-56 - [c58]Hyekyoung Lee, Moo K. Chung, Hyejin Kang, Hongyoon Choi, Seunggyun Ha, Youngmin Huh, Eunkyung Kim, Dong Soo Lee:
Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian. MICCAI (4) 2019: 674-682 - [i7]Shih-Gu Huang, Ilwoo Lyu, Anqi Qiu, Moo K. Chung:
Fast Polynomial Approximation of Heat Diffusion on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis. CoRR abs/1911.02721 (2019) - 2018
- [j26]Min-Hee Lee, Dong Youn Kim, Moo K. Chung, Andrew L. Alexander, Richard J. Davidson:
Topological Properties of the Structural Brain Network in Autism via ϵ-Neighbor Method. IEEE Trans. Biomed. Eng. 65(10): 2323-2333 (2018) - [j25]Victor Solo, Jean-Baptiste Poline, Martin A. Lindquist, Sean L. Simpson, F. DuBois Bowman, Moo K. Chung, Ben Cassidy:
Connectivity in fMRI: Blind Spots and Breakthroughs. IEEE Trans. Medical Imaging 37(7): 1537-1550 (2018) - [c57]Moo K. Chung, Zhan Luo, Nagesh Adluru, Andrew L. Alexander, Richard J. Davidson, H. Hill Goldsmith:
Heritability of nested hierarchical structural brain network. EMBC 2018: 554-557 - [c56]Moo K. Chung, Yanli Wang, Guorong Wu:
Discrete Heat Kernel Smoothing in Irregular Image Domains. EMBC 2018: 5101-5104 - [c55]Hyekyoung Lee, Moo K. Chung, Hyejin Kang, Hongyoon Choi, Yu Kyeong Kim, Dong Soo Lee:
Abnormal hole detection in brain connectivity by kernel density of persistence diagram and Hodge Laplacian. ISBI 2018: 20-23 - [c54]Guorong Wu, Brent C. Munsell, Paul J. Laurienti, Moo K. Chung:
GRAND: Unbiased Connectome Atlas of Brain Network by Groupwise Graph Shrinkage and Network Diffusion. CNI@MICCAI 2018: 127-135 - [c53]Zachery Morrissey, Liang Zhan, Hyekyoung Lee, Johnson J. G. Keiriz, Angus G. Forbes, Olusola Ajilore, Alex D. Leow, Moo K. Chung:
Phase Angle Spatial Embedding (PhASE) - A Kernel Method for Studying the Topology of the Human Functional Connectome. MICCAI (3) 2018: 367-374 - [c52]Moo K. Chung, Zhan Luo, Alex D. Leow, Andrew L. Alexander, Richard J. Davidson, H. Hill Goldsmith:
Exact Combinatorial Inference for Brain Images. MICCAI (1) 2018: 629-637 - [i6]Andrey Gritsenko, Martin A. Lindquist, Gregory R. Kirk, Moo K. Chung:
Hill Climbing Optimized Twin Classification Using Resting-State Functional MRI. CoRR abs/1807.00244 (2018) - 2017
- [j24]Moo K. Chung, Jamie L. Hanson, Nagesh Adluru, Andrew L. Alexander, Richard J. Davidson, Seth D. Pollak:
Integrative Structural Brain Network Analysis in Diffusion Tensor Imaging. Brain Connect. 7(6): 331-346 (2017) - [c51]Moo K. Chung, Victoria Villalta-Gil, Hyekyoung Lee, Paul J. Rathouz, Benjamin B. Lahey, David H. Zald:
Exact Topological Inference for Paired Brain Networks via Persistent Homology. IPMI 2017: 299-310 - [c50]Yuan Wang, Moo K. Chung, Daniela Dentico, Antoine Lutz, Richard J. Davidson:
Topological Network Analysis of Electroencephalographic Power Maps. CNI@MICCAI 2017: 134-142 - [c49]Moo K. Chung, Hyekyoung Lee, Victor Solo, Richard J. Davidson, Seth D. Pollak:
Topological Distances Between Brain Networks. CNI@MICCAI 2017: 161-170 - [c48]Moo K. Chung, Ying Ji Chuang, Houri K. Vorperian:
Online Statistical Inference for Large-Scale Binary Images. MICCAI (2) 2017: 729-736 - [i5]Moo K. Chung, Yanli Wang, Gurong Wu:
Heat Kernel Smoothing in Irregular Image Domains. CoRR abs/1710.07849 (2017) - 2015
- [j23]Anqi Qiu, Annie Lee, Mingzhen Tan, Moo K. Chung:
Manifold learning on brain functional networks in aging. Medical Image Anal. 20(1): 52-60 (2015) - [j22]Ameer Pasha Hosseinbor, Moo K. Chung, Yu-Chien Wu, Barbara B. Bendlin, Andrew L. Alexander:
A 4D hyperspherical interpretation of q-space. Medical Image Anal. 21(1): 15-28 (2015) - [j21]Moo K. Chung, Anqi Qiu, Seongho Seo, Houri K. Vorperian:
Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images. Medical Image Anal. 22(1): 63-76 (2015) - [j20]Ameer Pasha Hosseinbor, Moo K. Chung, Cheng Guan Koay, Stacey M. Schaefer, Carien M. van Reekum, Lara Peschke-Schmitz, Mattew J. Sutterer, Andrew L. Alexander, Richard J. Davidson:
4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: A holistic treatment of multiple disconnected anatomical structures. Medical Image Anal. 22(1): 89-101 (2015) - [j19]Won Hwa Kim, Nagesh Adluru, Moo K. Chung, Ozioma C. Okonkwo, Sterling C. Johnson, Barbara B. Bendlin, Vikas Singh:
Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease. NeuroImage 118: 103-117 (2015) - [j18]Moo K. Chung, Jamie L. Hanson, Jieping Ye, Richard J. Davidson, Seth D. Pollak:
Persistent Homology in Sparse Regression and Its Application to Brain Morphometry. IEEE Trans. Medical Imaging 34(9): 1928-1939 (2015) - [c47]Won Hwa Kim, Barbara B. Bendlin, Moo K. Chung, Sterling C. Johnson, Vikas Singh:
Statistical inference models for image datasets with systematic variations. CVPR 2015: 4795-4803 - [c46]Yuan Wang, Moo K. Chung, David R. W. Bachhuber, Stacey M. Schaefer, Carien M. van Reekum, Richard J. Davidson:
LARS network filtration in the study of EEG brain connectivity. ISBI 2015: 30-33 - [c45]Yuan Wang, Hernando Ombao, Moo K. Chung:
Topological seizure origin detection in electroencephalographic signals. ISBI 2015: 351-354 - [c44]Won Hwa Kim, Vikas Singh, Moo K. Chung, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson:
Multi-resolution statistical analysis on graph structured data in neuroimaging. ISBI 2015: 1548-1551 - [c43]Min-Hee Lee, Dong Youn Kim, Sang-Hyeon Lee, Jinuk Kim, Moo K. Chung:
Comparisons of topological properties in autism for the brain network construction methods. Medical Imaging: Image Processing 2015: 941323 - [i4]Moo K. Chung, Victoria G. Vilalta, Paul J. Rathouz, Benjamin B. Lahey, David H. Zald:
Linear Embedding of Large-Scale Brain Networks for Twin fMRI. CoRR abs/1509.04771 (2015) - 2014
- [j17]Jia Du, Ameer Pasha Hosseinbor, Moo K. Chung, Barbara B. Bendlin, Gaurav Suryawanshi, Andrew L. Alexander, Anqi Qiu:
Diffeomorphic metric mapping and probabilistic atlas generation of hybrid diffusion imaging based on BFOR signal basis. Medical Image Anal. 18(7): 1002-1014 (2014) - [j16]Won Hwa Kim, Vikas Singh, Moo K. Chung, Chris Hinrichs, Deepti Pachauri, Ozioma C. Okonkwo, Sterling C. Johnson:
Multi-resolutional shape features via non-Euclidean wavelets: Applications to statistical analysis of cortical thickness. NeuroImage 93: 107-123 (2014) - [j15]Arshi Khalid, Byung Sun Kim, Moo K. Chung, Jong Chul Ye, Daejong Jeon:
Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology. NeuroImage 101: 351-363 (2014) - [c42]Hyunwoo J. Kim, Barbara B. Bendlin, Nagesh Adluru, Maxwell D. Collins, Moo K. Chung, Sterling C. Johnson, Richard J. Davidson, Vikas Singh:
Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images. CVPR 2014: 2705-2712 - [c41]Ameer Pasha Hosseinbor, Won Hwa Kim, Nagesh Adluru, Amit Acharya, Houri K. Vorperian, Moo K. Chung:
The 4D Hyperspherical Diffusion Wavelet: A New Method for the Detection of Localized Anatomical Variation. MICCAI (3) 2014: 65-72 - [c40]Hyekyoung Lee, Moo K. Chung, Hyejin Kang, Dong Soo Lee:
Hole Detection in Metabolic Connectivity of Alzheimer's Disease Using k -Laplacian. MICCAI (3) 2014: 297-304 - [c39]Moo K. Chung, Stacey M. Schaefer, Carien M. van Reekum, Lara Peschke-Schmitz, Mattew J. Sutterer, Richard J. Davidson:
A Unified Kernel Regression for Diffusion Wavelets on Manifolds Detects Aging-Related Changes in the Amygdala and Hippocampus. MICCAI (2) 2014: 789-796 - [c38]Moo K. Chung, Seung-Goo Kim, Stacey M. Schaefer, Carien M. van Reekum, Lara Peschke-Schmitz, Mattew J. Sutterer, Richard J. Davidson:
Improved statistical power with a sparse shape model in detecting an aging effect in the hippocampus and amygdala. Medical Imaging: Image Processing 2014: 90340Y - [i3]Moo K. Chung, Jamie L. Hanson, Jieping Ye, Richard J. Davidson, Seth D. Pollak:
Persistent Homology in Sparse Regression and Its Application to Brain Morphometry. CoRR abs/1409.0177 (2014) - [i2]Moo K. Chung, Anqi Qiu, Seongho Seo, Houri K. Vorperian:
Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images. CoRR abs/1409.6498 (2014) - 2013
- [j14]Ameer Pasha Hosseinbor, Moo K. Chung, Yu-Chien Wu, Andrew L. Alexander:
Bessel Fourier Orientation Reconstruction (BFOR): An analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64: 650-670 (2013) - [c37]Won Hwa Kim, Moo K. Chung, Vikas Singh:
Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems. CVPR 2013: 2139-2146 - [c36]Jia Du, Ameer Pasha Hosseinbor, Moo K. Chung, Barbara B. Bendlin, Gaurav Suryawanshi, Andrew L. Alexander, Anqi Qiu:
Diffeomorphic Metric Mapping of Hybrid Diffusion Imaging Based on BFOR Signal Basis. IPMI 2013: 147-158 - [c35]Moo K. Chung, Jamie L. Hanson, Hyekyoung Lee, Nagesh Adluru, Andrew L. Alexander, Richard J. Davidson, Seth D. Pollak:
Persistent Homological Sparse Network Approach to Detecting White Matter Abnormality in Maltreated Children: MRI and DTI Multimodal Study. MICCAI (1) 2013: 300-307 - [c34]Ameer Pasha Hosseinbor, Moo K. Chung, Yu-Chien Wu, Andrew L. Alexander, Barbara B. Bendlin:
A 4D Hyperspherical Interpretation of q-space. MICCAI (3) 2013: 501-509 - [c33]Ameer Pasha Hosseinbor, Moo K. Chung, Stacey M. Schaefer, Carien M. van Reekum, Lara Peschke-Schmitz, Mattew J. Sutterer, Andrew L. Alexander, Richard J. Davidson:
4D Hyperspherical Harmonic (HyperSPHARM) Representation of Multiple Disconnected Brain Subcortical Structures. MICCAI (1) 2013: 598-605 - [c32]Won Hwa Kim, Nagesh Adluru, Moo K. Chung, Sylvia Charchut, Johnson J. GadElkarim, Lori L. Altshuler, Teena Moody, Anand R. Kumar, Vikas Singh, Alex D. Leow:
Multi-resolutional Brain Network Filtering and Analysis via Wavelets on Non-Euclidean Space. MICCAI (3) 2013: 643-651 - [i1]Jia Du, Ameer Pasha Hosseinbor, Moo K. Chung, Barbara B. Bendlin, Gaurav Suryawanshi, Andrew L. Alexander, Anqi Qiu:
Diffeomorphic Metric Mapping and Probabilistic Atlas Generation of Hybrid Diffusion Imaging based on BFOR Signal Basis. CoRR abs/1309.6379 (2013) - 2012
- [j13]Hyekyoung Lee, Hyejin Kang, Moo K. Chung, Bung-Nyun Kim, Dong Soo Lee:
Persistent Brain Network Homology From the Perspective of Dendrogram. IEEE Trans. Medical Imaging 31(12): 2267-2277 (2012) - [c31]Seung-Goo Kim, Brian B. Avants, Hyekyoung Lee, James C. Gee, Moo K. Chung, Richard J. Davidson, Jamie L. Hanson, Seth D. Pollak:
Agreement between the white matter connectivity based on the tensor-based morphometry and the volumetric white matter parcellations based on diffusion tensor imaging. ISBI 2012: 42-45 - [c30]Ameer Pasha Hosseinbor, Moo K. Chung, Yu-Chien Wu, John O. Fleming, Aaron S. Field, Andrew L. Alexander:
Extracting Quantitative Measures from EAP: A Small Clinical Study Using BFOR. MICCAI (2) 2012: 280-287 - [c29]Seung-Goo Kim, Moo K. Chung, Stacey M. Schaefer, Carien M. van Reekum, Richard J. Davidson:
Sparse shape representation using the Laplace-Beltrami eigenfunctions and its application to modeling subcortical structures. MMBIA 2012: 25-32 - [c28]Won Hwa Kim, Deepti Pachauri, Charles R. Hatt, Moo K. Chung, Sterling C. Johnson, Vikas Singh:
Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. NIPS 2012: 1250-1258 - 2011
- [j12]Hyekyoung Lee, Dong Soo Lee, Hyejin Kang, Boong-Nyun Kim, Moo K. Chung:
Sparse Brain Network Recovery Under Compressed Sensing. IEEE Trans. Medical Imaging 30(5): 1154-1165 (2011) - [j11]Deepti Pachauri, Chris Hinrichs, Moo K. Chung, Sterling C. Johnson, Vikas Singh:
Topology-Based Kernels With Application to Inference Problems in Alzheimer's Disease. IEEE Trans. Medical Imaging 30(10): 1760-1770 (2011) - [c27]Seongho Seo, Moo K. Chung:
Laplace-Beltrami eigenfunction expansion of cortical manifolds. ISBI 2011: 372-375 - [c26]Seung-Goo Kim, Moo K. Chung, Jamie L. Hanson, Brian B. Avants, James C. Gee, Richard J. Davidson, Seth D. Pollak:
Structural connectivity via the tensor-based morphometry. ISBI 2011: 808-811 - [c25]Hyekyoung Lee, Moo K. Chung, Hyejin Kang, Bung-Nyun Kim, Dong Soo Lee:
Discriminative persistent homology of brain networks. ISBI 2011: 841-844 - [c24]Moo K. Chung, Hyekyoung Lee, Peter T. Kim, Jong Chul Ye:
Sparse topological data recovery in medical images. ISBI 2011: 1125-1129 - [c23]Ameer Pasha Hosseinbor, Moo K. Chung, Yu-Chien Wu, Andrew L. Alexander:
Bessel Fourier Orientation Reconstruction: An Analytical EAP Reconstruction Using Multiple Shell Acquisitions in Diffusion MRI. MICCAI (2) 2011: 217-225 - [c22]Moo K. Chung, Seongho Seo, Nagesh Adluru, Houri K. Vorperian:
Hot Spots Conjecture and Its Application to Modeling Tubular Structures. MLMI 2011: 225-232 - [c21]Hyekyoung Lee, Moo K. Chung, Hyejin Kang, Boong-Nyun Kim, Dong Soo Lee:
Computing the Shape of Brain Networks Using Graph Filtration and Gromov-Hausdorff Metric. MICCAI (2) 2011: 302-309 - [c20]Seongho Seo, Moo K. Chung, Brian J. Whyms, Houri K. Vorperian:
Mandible shape modeling using the second eigenfunction of the Laplace-Beltrami operator. Medical Imaging: Image Processing 2011: 79620Z - [c19]Moo K. Chung, Nagesh Adluru, Kim M. Dalton, Andrew L. Alexander, Richard J. Davidson:
Scalable brain network construction on white matter fibers. Medical Imaging: Image Processing 2011: 79624G - [c18]Seung-Goo Kim, Moo K. Chung, Seongho Seo, Stacey M. Schaefer, Carien M. van Reekum, Richard J. Davidson:
Heat Kernel Smoothing via Laplace-Beltrami Eigenfunctions and Its Application to Subcortical Structure Modeling. PSIVT (1) 2011: 36-47 - [c17]Nagesh Adluru, Moo K. Chung, Nicholas T. Lange, Janet E. Lainhart, Andrew L. Alexander:
Applications of Epsilon Radial Networks in Neuroimage Analyses. PSIVT (1) 2011: 236-247 - 2010
- [j10]Moo K. Chung, Keith J. Worsley, Brendon M. Nacewicz, Kim M. Dalton, Richard J. Davidson:
General multivariate linear modeling of surface shapes using SurfStat. NeuroImage 53(2): 491-505 (2010) - [c16]Seongho Seo, Moo K. Chung, Houri K. Vorperian:
Heat Kernel Smoothing Using Laplace-Beltrami Eigenfunctions. MICCAI (3) 2010: 505-512
2000 – 2009
- 2009
- [j9]Jee Eun Lee, Moo K. Chung, Mariana Lazar, Molly B. DuBray, Jinsuh Kim, Erin D. Bigler, Janet E. Lainhart, Andrew L. Alexander:
A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. NeuroImage 44(3): 870-883 (2009) - [j8]Chris Hinrichs, Vikas Singh, Lopamudra Mukherjee, Guofan Xu, Moo K. Chung, Sterling C. Johnson:
Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage 48(1): 138-149 (2009) - [c15]Moo K. Chung, Peter Bubenik, Peter T. Kim:
Persistence Diagrams of Cortical Surface Data. IPMI 2009: 386-397 - [c14]Moo K. Chung, Yu-Chien Wu, Andrew L. Alexander:
3D Eigenfunction Expansion of Sparsely Sampled 2D Cortical Data. ISBI 2009: 113-116 - [c13]Moo K. Chung, Vikas Singh, Peter T. Kim, Kim M. Dalton, Richard J. Davidson:
Topological Characterization of Signal in Brain Images Using Min-Max Diagrams. MICCAI (1) 2009: 158-166 - [c12]Ali R. Khan, Moo K. Chung, Mirza Faisal Beg:
Robust Atlas-Based Brain Segmentation Using Multi-structure Confidence-Weighted Registration. MICCAI (1) 2009: 549-557 - 2008
- [j7]Moo K. Chung, Kim M. Dalton, Richard J. Davidson:
Tensor-Based Cortical Surface Morphometry via Weighted Spherical Harmonic Representation. IEEE Trans. Medical Imaging 27(8): 1143-1151 (2008) - [c11]Moo K. Chung, Daniel J. Kelley, Kim M. Dalton, Richard J. Davidson:
Quantifying cortical surface asymmetry via logistic discriminant analysis. CVPR Workshops 2008: 1-8 - [c10]Moo K. Chung, Brendon M. Nacewicz, Shubing Wang, Kim M. Dalton, Seth D. Pollak, Richard J. Davidson:
Amygdala Surface Modeling with Weighted Spherical Harmonics. MIAR 2008: 177-184 - [c9]Vikas Singh, Lopamudra Mukherjee, Moo K. Chung:
Cortical Surface Thickness as a Classifier: Boosting for Autism Classification. MICCAI (1) 2008: 999-1007 - 2007
- [j6]Terrence R. Oakes, Andrew S. Fox, Tom Johnstone, Moo K. Chung, Ned H. Kalin, Richard J. Davidson:
Integrating VBM into the General Linear Model with voxelwise anatomical covariates. NeuroImage 34(2): 500-508 (2007) - [j5]Moo K. Chung, Kim M. Dalton, Li Shen, Alan C. Evans, Richard J. Davidson:
Weighted Fourier Series Representation and Its Application to Quantifying the Amount of Gray Matter. IEEE Trans. Medical Imaging 26(4): 566-581 (2007) - [c8]Li Shen, Andrew J. Saykin, Moo K. Chung, Heng Huang:
Morphometric Analysis of Hippocampal Shape in Mild Cognitive Impairment: An Imaging Genetics Study. BIBE 2007: 211-217 - 2006
- [c7]Li Shen, Moo K. Chung:
Large-Scale Modeling of Parametric Surfaces Using Spherical Harmonics. 3DPVT 2006: 294-301 - [c6]Jee Eun Lee, Moo K. Chung, Andrew L. Alexander:
Evaluation of anisotropic filters for diffusion tensor imaging. ISBI 2006: 77-78 - [c5]Moo K. Chung:
Heat kernel smoothing on unit sphere. ISBI 2006: 992-995 - [c4]Moo K. Chung, Li Shen, Kim M. Dalton, Richard J. Davidson:
Multi-scale Voxel-Based Morphometry Via Weighted Spherical Harmonic Representation. MIAR 2006: 36-43 - 2005
- [j4]Moo K. Chung, Steven M. Robbins, Kim M. Dalton, Richard J. Davidson, Andrew L. Alexander, Alan C. Evans:
Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage 25(4): 1256-1265 (2005) - [c3]Moo K. Chung, Steve Robbins, Alan C. Evans:
Unified Statistical Approach to Cortical Thickness Analysis. IPMI 2005: 627-638 - 2004
- [j3]Moo K. Chung, Kim M. Dalton, Andrew L. Alexander, Richard J. Davidson:
Less white matter concentration in autism: 2D voxel-based morphometry. NeuroImage 23(1): 242-251 (2004) - [c2]Moo K. Chung, Jonathan Taylor:
Diffusion Smoothing on Brain Surface via Finite Element Method. ISBI 2004: 432-435 - 2003
- [j2]Moo K. Chung, Keith J. Worsley, Steve Robbins, Tomás Paus, Jonathan Taylor, Jay N. Giedd, Judith L. Rapoport, Alan C. Evans:
Deformation-based surface morphometry applied to gray matter deformation. NeuroImage 18(2): 198-213 (2003) - [c1]Moo K. Chung, Keith J. Worsley, Steve Robbins, Alan C. Evans:
Tensor-based Brain Surface Modeling and Analysi. CVPR (1) 2003: 467-476 - 2001
- [j1]Moo K. Chung, Keith J. Worsley, Tomás Paus, C. Cherif, D. Louis Collins, Jay N. Giedd, Judith L. Rapoport, Alan C. Evans:
A Unified Statistical Approach to Deformation-Based Morphometry. NeuroImage 14(3): 595-606 (2001)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint