Assessing the Spatial Pattern of Irrigation Demand under Climate Change in Arid Area
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. SEBS Model
3.2. Prediction of the Future Climate
3.3. Prediction of Irrigation Demand
4. Results
4.1. Distribution of the Evapotranspiration
4.1.1. Model Validation
4.1.2. Spatial Distribution of the Evapotranspiration
4.1.3. Spatial Pattern of the Evapotranspiration of Farm Land
4.2. Prediction of Evapotranspiration
4.3. Spatial Pattern of Irrigation Demand
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uniyal, B.; Jha, M.K.; Verma, A.K. Assessing climate change impact on water balance components of a river basin using SWAT model. Water Resour. Manag. 2015, 29, 4767–4785. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Sci. Total Environ. 2017, 601, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Lu, E.; Takle, E.S.; Manoj, J. The relationships between climatic and hydrological changes in the upper Mississippi River Basin: A SWAT and Multi-GCM study. J. Hydrometeorol. 2010, 11, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Ficklin, D.L.; Barnhart, B.L. SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds. J. Hydrol. 2014, 519, 2081–2090. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, Y.; Fu, G. Uncertainties in SWAT extreme flow simulation under climate change. J. Hydrol. 2014, 515, 205–222. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Perez-Sanchez, J.; Carrillo-Garcia, J.; Soto, J. Using SWAT and Fuzzy TOPSIS to assess the impact of climate change in the headwaters of the Segura River Basin (SE Spain). Water 2017, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Grusson, Y.; Anctil, F.; Sauvage, S.; Perez, J.M.S. Assessing the climatic and temporal transposability of the SWAT model across a large contrasted watershed. J. Hydrol. Eng. 2017, 22, 04017004. [Google Scholar] [CrossRef]
- Lopez-Carr, D.; Davis, J.; Jankowska, M.M.; Grant, L.; Lopez-Carr, A.C.; Clark, M. Space versus place in complex human-natural systems: Spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala. Ecol. Model. 2012, 229, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Xiong, L.; Wang, D.; Liu, P.; Guo, S.; Xu, C. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol. 2015, 522, 326–338. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Zhou, S.; Chen, F. Quantifying the effects of land surface change on annual runoff considering precipitation variability by SWAT. Water Resour. Manag. 2016, 30, 1071–1084. [Google Scholar] [CrossRef]
- Wang, Q.M.; Mei, X.R. Strategies for sustainable use of agricultural water resources in China. J. Agric. 2017, 7, 80–83. [Google Scholar]
- Yu, Y.; Huang, L.M.; Shen, B.; Maimaitiming, A.; Qin, S.Y.; Dai, Y.P. Current situation analysis of water consumption in Hotan River Basin. J. Water Resour. Water Engin. 2009, 20, 47–51. [Google Scholar]
- Liu, C.Y.; Zhao, J.; Liu, Y.Y.; Wei, W. Remote sensing estimation of evapotranspiration quantity and analysis of space-time structure over Shiyang River Basin. Remote Sens. Land Resour. 2011, 23, 117–122. [Google Scholar]
- Bahir, M.; Boulet, G.; Olioso, A.; Rivalland, V.; Gallego-Elvira, B.; Mira, M.; Rodriguez, J.; Jarlan, L.; Merlin, O. Evaluation and aggregation properties of thermal infra-red-based evapotranspiration algorithms from 100 m to the km scale over a semi-arid irrigated agricultural area. Remote Sens. 2017, 9, 1178. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Val, T.V.D. A remote sensing surface energy balance algorithm for land (SEBAL)—2. Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sc. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.H.; Liu, Z.H.; Yao, J.Q. Spatial and temporal distribution of evapotranspiration in the hutubi County based on Landsat8 data and SEBS model. Ecol. Sci. 2016, 35, 26–32. [Google Scholar]
- He, Y.B.; Wang, S.L. Regional evapotranspiration of different land covers based on remote sensing. Chin. J. Appl. Ecol. 2007, 18, 288–296. [Google Scholar]
- Losgedaragh, S.Z.; Rahimzadegan, M. Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). J. Hydrol. 2018, 561, 523–531. [Google Scholar] [CrossRef]
- Liu, R.; Wen, J.; Wang, X.; Wang, Z. Validation of evapotranspiration and its long-term trends in the Yellow River source region. J. Water Clim. Chang. 2017, 8, 495–509. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Hou, J.; Gu, J.; Zhu, G.; Li, X. Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agric. For. Meteorol. 2017, 244, 82–97. [Google Scholar] [CrossRef]
- Sun, G.; Hu, Z.; Sun, F.; Wang, J.; Xie, Z.; Lin, Y.; Huang, F. An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data. Theor. Appl. Climatol. 2017, 129, 965–976. [Google Scholar] [CrossRef]
- Jin, X.; Guo, R.; Xia, W. Distribution of actual evapotranspiration over Qaidam Basin, an arid area in China. Remote Sens. 2013, 5, 6976–6996. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, B.; Li, Q.; Li, J.; Abdulla, S. Spatio-temporal pattern and changes of evapotranspiration in arid Central Asia and Xinjiang of China. J. Arid Land 2012, 4, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.Y.; Zhao, H.L.; Jiang, Y.Z.; Yan, H.W.; Cao, Y.; Huang, Y.Y.; Hao, Z. Daily evapotranspiration estimation at the field scale: Using the modified SEBS model and HJ-1 data in a Desert-Oasis Area, Northwestern China. Water 2018, 10, 640. [Google Scholar] [CrossRef] [Green Version]
- Muthuwatta, L.P.; Ahmad, M.; Bos, M.G.; Rientjes, T.H.M. Assessment of water availability and consumption in the Karkheh River Basin, Iran-Using remote sensing and Geo-statistics. Water Resour. Manag. 2010, 24, 459–484. [Google Scholar] [CrossRef] [Green Version]
- Alkhaier, F.; Su, Z.; Flerchinger, G.N. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS. Hydrol. Earth Syst. Sci. 2012, 16, 1833–1844. [Google Scholar] [CrossRef] [Green Version]
- Mahour, M.; Tolpekin, V.; Stein, A.; Sharifi, A. A comparison of two downscaling procedures to increase the spatial resolution of mapping actual evapotranspiration. ISPRS J. Photogramm. 2017, 126, 56–67. [Google Scholar] [CrossRef]
- Gibson, L.A.; Muench, Z.; Engelbrecht, J. Particular uncertainties encountered in using a pre-packaged SEBS model to derive evapotranspiration in a heterogeneous study area in South Africa. Hydrol. Earth Syst. Sci. 2011, 15, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Li, B.F.; Chen, Y.N.; Li, W.H.; Chao, Z.C. Remote sensing and the SEBAL model for estimating evapotranspiration in the Tarim River. Acta Geogr. Sin. 2011, 66, 1230–1238. [Google Scholar]
- Zhuo, G.; La, B.; Pubu, C.; Luo, B. Study on daily surface evapotranspiration with SEBS in Tibet Autonomous Region. J. Geogr. Sci. 2014, 24, 113–128. [Google Scholar] [CrossRef]
- Chen, Y.M.; Guo, G.S.; Wang, G.X.; Kang, S.Z.; Luo, H.B.; Zhang, D.Z. Main Crop Water Requirement and Irrigation of China, 1st ed.; Water Resources and Electric Power Press: Beijing, China, 1995; pp. 103–375. [Google Scholar]
- Feng, X.X.; Qin, Z.D.; Zheng, X.Q.; Chen, J.F. Evapotranspiration estimation in the Liulin spring area based on SEBS model. J. Taiyuan Univ. Technol. 2014, 45, 259–264. [Google Scholar]
- Koutroulis, A.G.; Grillakis, M.G.; Tsanis, I.K.; Papadimitriou, L. Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim. Dynam. 2016, 47, 1881–1898. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Palerme, C.; Genthon, C.; Claud, C.; Kay, J.E.; Wood, N.B.; L’Ecuyer, T. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim. Dynam. 2017, 48, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.F.; Ren, C.Y.; Wang, Y.H.; Cui, F.Q.; Lu, X.T.; Gong, Z.J. Spatial difference characteristics on simulation capability of seasonal variation of air temperature simulated by three global climate models in China. Arid Land Geogr. 2018, 41, 972–983. [Google Scholar]
- Xu, C.; Xu, Y. Preliminary assessment of simulations of climate changes over china by CMIP5 Multi-Models. Atmos. Ocean. Sci. Lett. 2012, 5, 489–494. [Google Scholar]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Zhao, C.S.; Huang, L.M.; Shen, B.; Lei, Z.D.; Hu, H.P.; Yang, S.X. The creation of the dissipative hydrological model for Hotan Oasis. J. Arid Land Resour. Environ. 2010, 24, 72–77. [Google Scholar]
- Bai, M. Improvement and Computer Realization of the Dissipative Hydrological Model for Hotan Oasis. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2011. [Google Scholar]
- Hu, H.P.; Tang, Q.H.; Lei, Z.D.; Yang, S.X. Runoff-evaporation hydrological model for arid platin oasis, 1, the model structure. Adv. Water Sci. 2004, 15, 140–145. [Google Scholar]
- Santhi, C.; Muttiah, R.S.; Arnold, J.G.; Srinivasan, R. A GIS-based regional planning tool for irrigation demand assessment and savings using SWAT. Trans. ASABE 2017, 48, 137–147. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.P.; Huang, Y. Effects of global warming on precipitation and runoff volume in Xinjiang. Arid Land Geog. 2005, 28, 597–602. [Google Scholar]
- Wang, S.F.; Jiao, X.Y.; Wang, L.P.; Sang, H.H.; Salahou, M.K.; Maimaitiyiming, A. Assessing climate change impacts on water resources of the Hotan Oasis using SWAT Model, Northwest China. Fresen. Environ. Bull. 2019, 28, 1801–1810. [Google Scholar]
- Luo, M.; Meng, F.; Liu, T.; Duan, Y.; Frankl, A.; Kurban, A.; De Maeyer, P. Multi-model ensemble approaches to assessment of effects of local climate change on water resources of the Hotan River Basin in Xinjiang, China. Water 2017, 9, 548. [Google Scholar] [CrossRef]
- Chen, Z.S.; Chen, Y.N.; Li, H.W.; Zhao, R.F. Analysis on land use changes and their ecological effect in Hotan River Basin. J. Arid Land Resour. Environ. 2009, 23, 49–54. [Google Scholar]
Number | GCMs | Spatial Resolution | Institution |
---|---|---|---|
1 | BCC_CSM1.1 | 2.7906° × 2.8125° | National climate center (China) |
2 | HadGEM2-ES | 1.875° × 1.24° | Hadley Centre of the Met Office (UK) |
3 | MIROC-ESM-CHEM | 2.7906° × 2.8125° | Frontier Research Center for Global Change (Japan) |
Number | Region | Area (km2) | Minimum Evapotranspiration (mm/a) | Maximum Evapotranspiration (mm/a) | Mean Value (mm/a) |
---|---|---|---|---|---|
1 | Hotan City | 237.55 | 220.32 | 1250.65 | 901.94 |
2 | Hotan County | 491.15 | 150.58 | 1207.39 | 854.41 |
3 | Lop County | 419.22 | 132.10 | 1185.69 | 871.16 |
4 | Moyu County | 881.94 | 122.96 | 1186.36 | 862.06 |
Scenarios | Base Period (mm/a) | Variation Range (%) | |
---|---|---|---|
2021–2030 | 2031–2040 | ||
BCC_RCP4.5 | 1203.95 | −0.50 | +0.41 |
BCC_RCP8.5 | 1192.38 | +1.71 | −0.34 |
HADG_RCP4.5 | 1197.16 | +2.36 | −1.89 |
HADG_RCP8.5 | 1246.09 | +0.37 | +0.83 |
MIROC_RCP4.5 | 1226.10 | +1.03 | +0.94 |
MIROC_RCP8.5 | 1272.70 | +0.47 | +3.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, S.; Zhang, L.; Salahou, M.K.; Jiao, X.; Sang, H. Assessing the Spatial Pattern of Irrigation Demand under Climate Change in Arid Area. ISPRS Int. J. Geo-Inf. 2020, 9, 506. https://doi.org/10.3390/ijgi9090506
Wang L, Wang S, Zhang L, Salahou MK, Jiao X, Sang H. Assessing the Spatial Pattern of Irrigation Demand under Climate Change in Arid Area. ISPRS International Journal of Geo-Information. 2020; 9(9):506. https://doi.org/10.3390/ijgi9090506
Chicago/Turabian StyleWang, Liping, Shufang Wang, Liudong Zhang, Mohamed Khaled Salahou, Xiyun Jiao, and Honghui Sang. 2020. "Assessing the Spatial Pattern of Irrigation Demand under Climate Change in Arid Area" ISPRS International Journal of Geo-Information 9, no. 9: 506. https://doi.org/10.3390/ijgi9090506
APA StyleWang, L., Wang, S., Zhang, L., Salahou, M. K., Jiao, X., & Sang, H. (2020). Assessing the Spatial Pattern of Irrigation Demand under Climate Change in Arid Area. ISPRS International Journal of Geo-Information, 9(9), 506. https://doi.org/10.3390/ijgi9090506