PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.2.1. Attention Mechanism
1.2.2. Semantic Correspondence Mechanism
- (1)
- We introduce a co-attention module which can deal with the displacement of buildings in orthoimages to enhance the feature representations and further mine the correlations therein. Meanwhile, we fuse the semantic and context information of the feature using a context fusion strategy;
- (2)
- We provide a new satellite dataset for building change detection frameworks covering various sensors, and verify its effectiveness by conducting extensive experiments;
- (3)
- We propose an effective Siamese building change detection framework and make some improvements. Moreover, we train our model using two different datasets. The proposed method shows superior performance: it can directly obtain pixel-level predictions without any other post-processing techniques.
2. Materials and Methods
2.1. Datasets
2.2. Methods
2.2.1. Problem Description
2.2.2. Architecture Overview
2.2.3. Co-Attention Module
2.2.4. Co-Layer Aggregation Module
2.2.5. Pyramid Change Module
2.3. Implementation Details
3. Results
3.1. Ablation Study
3.2. Comparisons with Other Methods
3.3. Robustness of the Method
4. Discussion
4.1. Importance of the Proposed Dataset
4.2. Advantages of the Proposed Baseline
4.3. Experimental Results Compared with Other Methods
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aleksandrowicz, S.; Turlej, K.; Lewiński, S.; Bochenek, Z. Change Detection Algorithm for the Production of Land Cover Change Maps over the European Union Countries. Remote Sens. 2014, 6, 5976–5994. [Google Scholar] [CrossRef] [Green Version]
- Earth Watching. Available online: https://earth.esa.int/web/earth-watching/change-detection (accessed on 25 January 2019).
- Onera Satellite Change Detection. Available online: http://dase.grss-ieee.org (accessed on 10 May 2019).
- Champion, N. 2D Building Change Detection from High Resolution Aerial Images and Correlation Digital Surface Models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36, 197–202. [Google Scholar]
- Cleve, C.; Kelly, M.; Kearns, F.R.; Moritz, M. Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 2008, 32, 317–326. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Zhu, T. Building Change Detection from Multitemporal High-Resolution Remotely Sensed Images Based on a Morphological Building Index. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 105–115. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.R.; Tullis, J.A. Object-based change detection using correlation image analysis and image segmentation. Int. J. Remote Sens. 2008, 29, 399–423. [Google Scholar] [CrossRef]
- Bouziani, M.; Goïta, K.; He, D.-C. Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS J. Photogramm. 2010, 65, 143–153. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis-Towards a new paradigm. ISPRS J. Photogramm. 2014, 87, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [Google Scholar] [CrossRef]
- Qin, R.; Tian, J.; Reinartz, P. 3D change detection–Approaches and applications. ISPRS J. Photogramm. 2016, 122, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Qin, R.; Cerra, D.; Reinartz, P. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-7, 149–155. [Google Scholar] [CrossRef]
- Malpica, J.A.; Alonso, M.C.; Papí, F.; Arozarena, A.; Martínez De Agirre, A. Change detection of buildings from satellite imagery and lidar data. Int. J. Remote Sens. 2012, 34, 1652–1675. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Zhang, Y. Building Change Detection by Combining Lidar data and Ortho Image. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B3, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F. State of the art in high density image matching. Photogramm. Rec. 2014, 29, 144–166. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Cui, S.; Reinartz, P. Building Change Detection Based on Satellite Stereo Imagery and Digital Surface Models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Price, B.; Cohen, S. Object contour detection with a fully convolutional encoder-decoder network. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C. Residual Attention Network for Image Classification. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Dai, J.; He, K.; Sun, J. Instance-aware semantic segmentation via multi-task network cascades. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Zhang, Z.; Vosselman, G.; Gerke, M.; Tuia, D.; Yang, M.Y. Change Detection between Multimodal Remote Sensing Data Using Siamese CNN. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.S.; Jin, D.K.; Kim, C.S. Change Detection in High Resolution Satellite Images Using an Ensemble of Convolutional Neural Networks. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018. [Google Scholar]
- Daudt, R.C.; Saux, B.L.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018. [Google Scholar]
- Lebedev, M.A.; Vizilter, Y.V.; Vygolov, O.V.; Knyaz, V.A.; Rubis, A.Y. Change Detection in Remote Sensing Images Using Conditional Adversarial Networks. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H.; He, X.; Bennamoun, M.; Porikli, F.; Sohel, F.; Togneri, R. Weakly Supervised Change Detection in a Pair of Images. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Khan, S.H.; He, X.; Porikli, F.; Bennamoun, M.; Sohel, F.; Togneri, R. Learning deep structured network for weakly supervised change detection. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2016. [Google Scholar]
- Caye Daudt, R.; Le Saux, B.; Boulch, A.; Gousseau, Y. Guided Anisotropic Diffusion and Iterative Learning for Weakly Supervised Change Detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Jong, K.L.D.; Bosman, A.S. Unsupervised Change Detection in Satellite Images Using Convolutional Neural Networks. Available online: https://arxiv.org/abs/1812.05815?context=cs.NE (accessed on 22 February 2019).
- Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S. Transferred Deep Learning-Based Change Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6960–6973. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C.; Du, B.; Zhang, L. Deep Siamese Multi-scale Convolutional Network for Change Detection in Multi-temporal VHR Images. Available online: https://arxiv.org/abs/1906.11479 (accessed on 1 July 2019).
- Rocco, I.; Arandjelović, R.; Sivic, J. End-to-end weakly-supervised semantic alignment. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Kanazawa, A.; Jacobs, D.W.; Chandraker, M. WarpNet: Weakly Supervised Matching for Single-View Reconstruction. Available online: https://arxiv.org/abs/1604.05592 (accessed on 18 September 2019).
- Huang, S.; Wang, Q.; Zhang, S.; Yan, S.; He, X. Dynamic Context Correspondence Network for Semantic Alignment. In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Wang, F.; Tax, D.M.J. Survey on the Attention Based RNN Model and Its Applications in Computer Vision. Available online: https://arxiv.org/abs/1601.06823 (accessed on 18 October 2019).
- Woo, S.; Park, J.; Lee, J.; Kweon, I. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (In European Conference on Computer Vision (ECCV)), Munich, Germany, 8–14 August 2018. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Zhao, H.; Zhang, Y.; Liu, S.; Shi, J.; Loy, C.C.; Lin, D.; Jia, J. PSANet: Point-wise Spatial Attention Network for Scene Parsing. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 August 2018. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. Available online: https://arxiv.org/abs/1805.10180 (accessed on 18 April 2019).
- Lu, X.; Wang, W.; Ma, C.; Shen, J.; Shao, L.; Porikli, F.M. See More, Know More: Unsupervised Video Object Segmentation with Co-Attention Siamese Networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Vedaldi, A. Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks. In Proceedings of the Conference and Workshop on Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Zhang, H.; Dana, K.; Shi, J.; Zhang, Z.; Wang, X.; Tyagi, A.; Agrawal, A. Context Encoding for Semantic Segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; Chua, T.-S. SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Xiong, C.; Zhong, V.; Socher, R. Dynamic Coattention Networks for Question Answering. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2016. [Google Scholar]
- Yu, Z.; Yu, J.; Cui, Y.; Tao, D.; Tian, Q. Deep Modular Co-Attention Networks for Visual Question Answering. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Nguyen, D.-K.; Okatani, T. Improved Fusion of Visual and Language Representations by Dense Symmetric Co-Attention for Visual Question Answering. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Lu, J.; Yang, J.; Batra, D.; Parikh, D. Hierarchical Question-Image Co-Attention for Visual Question Answering. In Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Xiao, P.; Yuan, M.; Zhang, X.; Feng, X.; Guo, Y. Cosegmentation for Object-Based Building Change Detection from High-Resolution Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1587–1603. [Google Scholar] [CrossRef]
- Rahman, F.; Vasu, B.; Cor, J.V.; Kerekes, J.; Savakis, A. Siamese Network with Multi-Level Features for Patch-Based Change Detection in Satellite Imagery. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018; pp. 958–962. [Google Scholar]
- Daudt, R.C.; Saux, B.L.; Boulch, A.; Gousseau, Y. Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 2115–2118. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–26 June 2005; pp. 886–893. [Google Scholar] [CrossRef] [Green Version]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Choy, C.B.; Gwak, J.; Savarese, S.; Chandraker, M. Universal Correspondence Network. In Proceedings of the Conference and Workshop on Neural Information Processing Systems (NeurIPS), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Moo Yi, K.; Trulls, E.; Ono, Y.; Lepetit, V.; Salzmann, M.; Fua, P. Learning to Find Good Correspondences. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Chen, Y.-C.; Huang, P.-H.; Yu, L.-Y.; Huang, J.-B.; Yang, M.-H.; Lin, Y.-Y. Deep Semantic Matching with Foreground Detection and Cycle-Consistency. In Proceedings of the 14th Asian Conference on Computer Vision (ACCV), Perth, Australia, 2–6 December 2018; pp. 347–362. [Google Scholar]
- Rocco, I.; Arandjelović, R.; Sivic, J. Convolutional neural network architecture for geometric matching. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Rocco, I.; Cimpoi, M.; Arandjelović, R.; Torii, A.; Pajdla, T.; Sivic, J. Neighbourhood Consensus Networks. In Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 3–5 December 2018. [Google Scholar]
- Chen, Y.-C.; Lin, Y.-Y.; Yang, M.-H.; Huang, J.-B. Show, Match and Segment: Joint Learning of Semantic Matching and Object Co-Segmentation. Available online: https://arxiv.org/abs/1906.05857?context=cs.CV (accessed on 15 September 2019).
- Zhang, C.; Cao, Z.-G.; Xiong, X.; Xian, K.; Qi, X. Salient Object Detection via Deep Hierarchical Context Aggregation and Multi-Layer Supervision. In Proceedings of the IEEE International Conference on Image Processing (ICIP) 2019, Taiwan, China, 22–25 September 2019. [Google Scholar]
- Liu, Y.; Qiu, Y.; Zhang, L.; Bian, J.; Nie, G.-Y.; Cheng, M.-M. Salient Object Detection via High-to-Low Hierarchical Context Aggregation. Available online: https://arxiv.org/abs/1812.10956 (accessed on 25 May 2019).
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AL, Canada, 14–16 April 2014. [Google Scholar]
- Varghese, A.; Gubbi, J.; Ramaswamy, A.; Balamuralidhar, P. ChangeNet: A Deep Learning Architecture for Visual Change Detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Sakurada, K. Weakly Supervised Silhouette-based Semantic Change Detection. Available online: https://arxiv.org/abs/1811.11985v1 (accessed on 25 June 2019).
- Peng, D.; Zhang, M.; Wanbing, G. End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pang, C.; Zhan, Z.; Zhang, X.; Yang, X. Building Change Detection for Remote Sensing Images Using a Dual Task Constrained Deep Siamese Convolutional Network Model. Available online: https://arxiv.org/abs/1909.07726?context=cs.CV (accessed on 18 October 2019).
- He, K.; Zhang, J.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
Datasets | GSD (Meters) | Source | Size (Pixels) | Number (Tiles) (Training/Validation/Test) |
---|---|---|---|---|
DI(WHU) | 0.075 | Aerial | 512 × 512 | 691/97/199 |
DII(EV-CD) | 0.2–2 | Satellite | 512 × 512 | 1225/175/350 |
Network | IoU (%) | OA (%) | Recall (%) | Precision (%) | F1(%) | Kappa (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DI | DII | DI | DII | DI | DII | DI | DII | DI | DII | DI | DII | |
Baseline | 96.52 | 92.02 | 99.75 | 99.63 | 96.24 | 90.23 | 96.89 | 92.65 | 96.25 | 90.67 | 96.12 | 90.48 |
+CS+CLA | 97.15 | 92.13 | 99.77 | 99.65 | 96.62 | 89.42 | 97.79 | 93.55 | 97.09 | 90.83 | 96.97 | 90.65 |
+ASPP | 97.11 | 92.52 | 99.78 | 99.66 | 96.91 | 90.25 | 97.38 | 93.83 | 97.0 | 91.38 | 96.88 | 91.21 |
+CoA | 97.38 | 92.73 | 99.79 | 99.68 | 97.01 | 90.59 | 97.84 | 94.01 | 97.29 | 91.74 | 97.17 | 91.57 |
Network | IoU (%) | OA (%) | Recall (%) | Precision (%) | F1(%) | Kappa (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DI | DII | DI | DII | DI | DII | DI | DII | DI | DII | DI | DII | |
ChangeNet | 70.80 | 56.19 | 96.88 | 97.44 | 52.97 | 21.39 | 66.99 | 32.48 | 57.48 | 23.46 | 55.79 | 22.41 |
MSOF | 90.84 | 82.66 | 99.08 | 99.20 | 88.68 | 71.55 | 92.45 | 89.12 | 89.40 | 78.20 | 88.92 | 77.81 |
DTCDSCN | 83.55 | 78.67 | 98.61 | 99.11 | 80.44 | 64.74 | 78.28 | 84.55 | 78.22 | 71.2 | 77.45 | 70.77 |
CSCDNet/w | 95.04 | 87.91 | 99.63 | 99.49 | 94.03 | 83.15 | 95.96 | 90.19 | 94.66 | 85.69 | 94.45 | 85.43 |
CSCDNet/wo | 94.68 | 87.53 | 99.63 | 99.45 | 93.74 | 81.38 | 95.63 | 91.19 | 94.09 | 85.13 | 93.89 | 84.85 |
FC-EF | 78.70 | 67.24 | 97.98 | 98.36 | 71.24 | 47.71 | 74.81 | 57.67 | 71.43 | 50.03 | 70.33 | 49.26 |
FC-Siam-Diff | 88.66 | 80.5 | 99.0 | 99.1 | 85.67 | 71.73 | 88.89 | 79.95 | 86.11 | 74.15 | 85.58 | 73.71 |
FC-Siam-Con | 82.08 | 68.02 | 98.4 | 98.43 | 74.67 | 47.76 | 88.72 | 60.85 | 76.57 | 51.47 | 75.69 | 50.73 |
MSFC-EF | 90.72 | 83.65 | 99.26 | 99.29 | 88.54 | 79.97 | 90.31 | 87.51 | 88.72 | 79.69 | 88.30 | 79.33 |
DSMS-FCN | 88.61 | 83.37 | 99.12 | 99.25 | 88.29 | 73.01 | 86.32 | 89.35 | 86.09 | 79.18 | 85.62 | 78.81 |
Baseline(ours) | 96.52 | 92.02 | 99.75 | 99.63 | 96.24 | 90.23 | 96.89 | 92.65 | 96.25 | 90.67 | 96.12 | 90.48 |
PGA-SiamNet | 97.38 | 92.73 | 99.79 | 99.68 | 97.01 | 90.59 | 97.84 | 94.01 | 97.29 | 91.74 | 97.17 | 91.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Hu, X.; Li, K.; Zhang, J.; Gong, J.; Zhang, M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection. Remote Sens. 2020, 12, 484. https://doi.org/10.3390/rs12030484
Jiang H, Hu X, Li K, Zhang J, Gong J, Zhang M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection. Remote Sensing. 2020; 12(3):484. https://doi.org/10.3390/rs12030484
Chicago/Turabian StyleJiang, Huiwei, Xiangyun Hu, Kun Li, Jinming Zhang, Jinqi Gong, and Mi Zhang. 2020. "PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection" Remote Sensing 12, no. 3: 484. https://doi.org/10.3390/rs12030484
APA StyleJiang, H., Hu, X., Li, K., Zhang, J., Gong, J., & Zhang, M. (2020). PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection. Remote Sensing, 12(3), 484. https://doi.org/10.3390/rs12030484