Environmental Aftermath of the 2019 Stromboli Eruption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wildfire Impact and Severity Recognition
- High-resolution optical images collected by the PLÉIADES (Table 1) constellation (0.5 m × 0.5 m resolution for Panchromatic + 2 m × 2 m Multispectral data) collected on 1 September 2018 (Figure 1b), 13 June 2019 (Figure 1c), 13 August 2019 (Figure 1d), and 8 October 2019 (Figure 1e). Images are 100% cloud free, with a total areal coverage of 58 km2;
- Multi-temporal Sentinel-2 MSI images (Figure 2), used to constrain the events at higher temporal resolution (Table 2). Sentinel-2 MSI has 13 spectral bands between 0.433 µm and 2.19 µm and pixel resolution between 10 m × 10 m and 60 m × 60 m, depending on the bands. Several band combination and ratio have been used to enhance contrasts between features, as well as to reduce the variations in topographic illumination.
- Data searching and downloading;
- Image pre-processing, through calibration, resampling, stacking, and subsets creation;
- Bands extraction;
- Index calculation: NBR, Normalized Difference Vegetation Index (NDVI), and Relativized Burn Ratio (RBR) [12], obtained as the difference between the NBR index of the images acquired before and after the event;
- Classification of the severity of the event, by converting the values of the indices into severity levels;
- Definition of the area covered by the wildfires.
2.2. Multi-temporal Land Cover and Land Use Analysis
2.3. Social Analysis
- To validate LC and LU analysis results;
- Reconstruction of the events;
- Perception of 3 July and 28 August 2019 paroxysms, from Stromboli and Ginostra villages;
- Damages assessment to the urbanized and non-urbanized areas (agricultural and semi-natural lands), following each explosion.
3. Results
3.1. LC/LU Evolution
3.2. Eyewitnesses Accounts
4. Discussion
- Physical impoverishment of terraces (dry stone walls and access roads poor maintenance);
- Reduction of hydraulic land management, in terms of outflow water drainage;
- Increase of hydrogeological risk factors;
- Reduction of crop diversity;
- Reduction of landscape variety;
- Loss of cultural heritage, in terms of material and immaterial settlings;
- Loss of agricultural knowledges, techniques and practices.
5. Conclusions
- The integration of remote sensing analysis with social analysis that has permitted to collect complete and accurate data;
- The use of correct reduction scales and imagery resolution in remote sensing analysis (also considering social surveys, conducted at local scale);
- Semi-structured interviews, that have allowed to evaluate inhabitants perception of paroxysmal events and real damages;
- The link between multi-temporal LC/LU analysis and social analysis, that has permitted to clarify the consequences of agricultural woody crops abandonment and riparian vegetation poor management, in terms of wildfire propagation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Legend Class LAND COVER | Legend Class LAND USE | Pre-Eruption 2019 | Post-Eruption 2019 | Percentage Variation (%) | ||
---|---|---|---|---|---|---|
Area m2 | % | Area m 2 | % | |||
Artificial areas | Buildings | 160,741 | 1.27 | 160,741 | 1.27 | 0 |
Adjacent areas | 412,005 | 3.27 | 409,919 | 3.25 | −0.5 | |
Infrastructures | 101,009 | 0.80 | 101,009 | 0.80 | 0 | |
Urban green areas | 1418 | 0.01 | 1418 | 0.01 | 0 | |
Sport facilities | 5345 | 0.04 | 5345 | 0.04 | 0 | |
Industrial areas, public services, power stations | 21,883 | 0.17 | 18,802 | 0.15 | −14.1 | |
Airports, helipads, harbors | 7341 | 0.06 | 7341 | 0.06 | 0 | |
Landfills | 1512 | 0.01 | 1512 | 0.01 | 0 | |
Cemeteries | 5579 | 0.04 | 5579 | 0.04 | 0 | |
Archaeological areas | 2191 | 0.02 | 2191 | 0.02 | 0 | |
Agricultural areas | Vineyards | 21,822 | 0.17 | 21,822 | 0.17 | 0 |
Mixed agricultural woody crops (olive groves, citrus groves) | 223,145 | 1.77 | 202,151 | 1.60 | −9.4 | |
Ancient olive groves, shrubberies and Mediterranean bushes | 2,875,753 | 22.79 | 1,893,250 | 15.01 | −34.2 | |
Semi-natural vegetated areas | Uncultivated areas | 63,749 | 0.51 | 63,182 | 0.50 | −0.9 |
Shrubberies and Mediterranean bushes | 4,561,225 | 36.15 | 860,617 | 6.82 | −81.1 | |
Herbaceous and shrub vegetation evolving | 46,031 | 0.36 | 46,031 | 0.36 | 0% | |
Semi-natural not vegetated areas | Cliffs and rocks with poor or absent vegetation | 774,354 | 6.14 | 519,454 | 4.12 | −32.9 |
Lava and lapilli fields | 3,182,509 | 25.23 | 3,182,506 | 25.23 | 0 | |
Dunes, sands | 142,661 | 1.13 | 142,661 | 1.13 | 0 | |
Artificial rocks | 6196 | 0.05 | 6196 | 0.05 | 0 | |
Fire-damaged areas | Fire-damaged areas | 0.0 | 0,00 | 4,964,742 | 39.35 | -- |
Total area | 12,616,477 | 100% | 12,616,477 | 100% | -- |
Appendix B
3 July 2019 Explosion | ||||
---|---|---|---|---|
Eyewitnesses | Age | Location | Event description | Damages description |
1 | 26 | -- | -- | 1 casualty |
2 | 46 | Stromboli (San Vincenzo) | (1) Violent explosion, ash column upwards. (2) Ash/lapilli fall at Ginostra. | 1 casualty; Wildfires on vegetated areas at Ginostra; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra. |
3 | 49 | Stromboli (San Vincenzo) | (1) Explosion, ash column upwards.; (2) Pyroclastic flow towards Sciara del Fuoco. | 1 casualty |
4 | ≈75 | Stromboli (San Vincenzo) | n.d. | 1 casualty |
5 | 68 | Stromboli (San Vincenzo) | n.d. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra. |
6 | 51 | Stromboli (Pizzillo) | (1) Violent explosion, ash column upwards; (2) Lava flows; (3) Ash/lapilli fall at Ginostra. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra. |
7 | 65 | Stromboli (at sea) | n.d. | n.d. |
8 | 58 | Stromboli (San Vincenzo) | n.d. | 1 casualty |
9 | 28 | Ginostra (Punta Corvi) | (1) Explosion, ash column upwards; (2) Lava overflows; (3) Tsunami waves; (4) Ash/lapilli fall at Ginostra. | 1 casualty; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra. |
10 | 46 | n.d. | (1) Explosion, ash column upwards; (2) Ash/lapilli fall at Ginostra. | Wildfires on vegetated areas at Stromboli and Ginostra; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra; Damages to the adjacent area of the photovoltaic power station at Ginostra. |
11 | 67 | -- | -- | 1 casualty |
12 | 60 | -- | -- | 1 casualty |
13 | ≈75 | Stromboli (Scari) | (1) Violent explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli and Ginostra. | 1 casualty; Wildfires on vegetated areas at Stromboli and Ginostra; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli and Ginostra. |
14 | 72 | n.d. | (1) Violent explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli and Ginostra. | Wildfires on vegetated areas at Ginostra; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli and Ginostra. |
15 | 24 | Stromboli (Scari) | n.d. | 1 casualty; Wildfires on vegetated areas at Ginostra. |
16 | 76 | Stromboli (Timpone) | n.d. | n.d. |
17 | 58 | Stromboli (Scari) | (1) Violent explosion, ash column upwards; (2) Pyroclastic flow towards Sciara del Fuoco; (3) Ash/lapilli fall at Ginostra. | 1 casualty; Wildfires on vegetated areas at Ginostra; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra. |
18 | 70 | Ginostra | (1) Explosion, ash column upwards; (2) Pyroclastic flow towards Sciara del Fuoco; (3) Impact of pyroclastic flow with the sea surface, grey cloud upwards, wildfires at Punta Corvi; (4) Ash/lapilli fall at Ginostra. | Wildfires on vegetated areas at Ginostra; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra; Damages to the canopies at Ginostra. |
19 | ≈75 | Ginostra | (1) Explosion, ash column upwards; (2) Pyroclastic flow towards Sciara del Fuoco; (3) Ash/lapilli fall at Ginostra. | 1 casualty; Wildfires on vegetated areas at Ginostra; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra; Damages to the canopies at Ginostra; Damages to the photovoltaic panels of private properties at Ginostra. |
20 | ≈75 | Ginostra | (1) Violent explosion, ash column upwards; (2) Pyroclastic flow toward Sciara del Fuoco; (3) Grey cloud upwards, wildfires at Timpone; (4) Ash/lapilli fall at Ginostra. | 1 casualty; Wildfires on vegetated areas at Ginostra; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Ginostra. Damages to the canopies at Ginostra; Damages to the adjacent area of the photovoltaic power station at Ginostra. |
Appendix C
28 August 2019 | ||||
---|---|---|---|---|
Interviewees | Age | Location (during the event) | Event description | Damages description |
1 | 26 | Stromboli (San Vincenzo) | n.d. | Wildfires on vegetated areas at Stromboli; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
2 | 46 | Stromboli (San Vincenzo) | (1) Violent explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
3 | 49 | Stromboli (San Vincenzo) | n.d. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
4 | ≈75 | Stromboli (San Vincenzo) | (1) Violent explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
5 | 68 | Stromboli (San Vincenzo) | (1) Violent explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
6 | 51 | (Stromboli (Pizzillo) | (1) Violent explosion, ash column upwards; (2) Lava flows; (3) Ash/lapilli fall at Stromboli. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
7 | 65 | Stromboli (at sea) | n.d. | n.d. |
8 | 58 | Stromboli (San Vincenzo) | n.d. | n.d. |
9 | 28 | n.d. | (1) Explosion, ash column upwards; (2) Lava overflows. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
10 | 46 | n.d. | (1) Violent explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
11 | 67 | Stromboli (Scari) | (1) Explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli. | Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
12 | 60 | Stromboli (Scari) | n.d. | n.d. |
13 | ≈75 | Stromboli (Scari) | (1) Violent explosion, ash column upwards; (2) Lava flows; (3) Ash/lapilli fall at Stromboli. | Wildfires on vegetated areas at Stromboli; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
14 | 72 | n.d. | (1) Explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli. | Wildfires on vegetated areas at Stromboli; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
15 | 24 | Stromboli (Scari) | n.d. | n.d. |
16 | 76 | Stromboli (Timpone) | n.d. | n.d. |
17 | 58 | Stromboli (Scari) | (1) Explosion, ash column upwards; (2) Ash/lapilli fall at Stromboli. | Wildfires on vegetated areas at Stromboli; Ash/lapilli accumulation on the roofs (obstruction of rainwater harvest cisterns and dirty water) at Stromboli. |
18 | 70 | Ginostra | n.d. | n.d. |
19 | ≈75 | Ginostra | n.d. | n.d. |
20 | ≈75 | Ginostra | n.d. | n.d. |
References
- Pierson, T.C.; Major, J.J. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Annu. Rev. Earth Planet. Sci. 2014, 42, 469–507. [Google Scholar] [CrossRef]
- Gomez, C. Digital photogrammetry and GIS-based analysis of the bio-geomorphological evolution of Sakurajima Volcano, diachronic analysis from 1947 to 2006. J. Volcanol. Geotherm. Res. 2014, 280, 1–13. [Google Scholar] [CrossRef]
- Barberi, F.; Rosi, M.; Sodi, A. Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol. 1993, 3, 173–187. [Google Scholar]
- Blackburn, E.A.; Wilson, L.; Sparks, R.J. Mechanisms and dynamics of strombolian activity. J. Geol. Soc. 1976, 132, 429–440. [Google Scholar] [CrossRef]
- Calvari, S.; Bonaccorso, A.; Madonia, P.; Neri, M.; Liuzzo, M.; Salerno, G.G.; Behncke, B.; Caltabiano, T.; Cristaldi, A.; Giuffrida, G.; et al. Major eruptive style changes induced by structural modifications of a shallow conduit system: The 2007–2012 Stromboli case. Bull. Volcanol. 2014, 76, 841. [Google Scholar] [CrossRef]
- Calvari, S.; Intrieri, E.; Di Traglia, F.; Bonaccorso, A.; Casagli, N.; Cristaldi, A. Monitoring crater-wall collapse at active volcanoes: A study of the 12 January 2013 event at Stromboli. Bull. Volcanol. 2016, 78, 39. [Google Scholar] [CrossRef]
- Di Traglia, F.; Calvari, S.; D’Auria, L.; Nolesini, T.; Bonaccorso, A.; Fornaciai, A.; Esposito, A.; Cristaldi, A.; Favalli, M.; Casagli, N. The 2014 Effusive Eruption at Stromboli: New Insights from In Situ and Remote-Sensing Measurements. Remote Sens. 2018, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Rosi, M.; Pistolesi, M.; Bertagnini, A.; Landi, P.; Pompilio, M.; Di Roberto, A. Stromboli volcano, Aeolian Islands (Italy): Present eruptive activity and hazards. Geol. Soc. Lond. Mem. 2013, 37, 473–490. [Google Scholar] [CrossRef]
- Plank, S.; Marchese, F.; Filizzola, C.; Pergola, N.; Neri, M.; Nolde, M.; Martinis, S. The July/August 2019 Lava Flows at the Sciara del Fuoco, Stromboli–Analysis from Multi-Sensor Infrared Satellite Imagery. Remote Sens. 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire Effects Monitoring and Inventory System; General Technical Report RMRS-GTR-164; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 1–164.
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Widland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Parks, S.A.; Dillon, G.K.; Miller, C. A new metric for quantifying burn severity: The relativized burn ratio. Remote Sens. 2014, 6, 1827–1844. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Llorens, R.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. Relationship between Soil Burn Severity in Forest Fires Measured In Situ and through Spectral Indices of Remote Detection. Forests 2019, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Babu, K.V.; Roy, A.; Aggarwal, R. Mapping of Forest Fire Burned Severity Using the Sentinel Datasets. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 425, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, A.; Amaral, A. A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data. Environments 2019, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Pepe, M.; Parente, C. Burned area recognition by change detection analysis using images derived from Sentinel-2 satellite: The case study of Sorrento Peninsula, Italy. J. Appl. Eng. Sci. 2018, 16, 225–232. [Google Scholar] [CrossRef]
- Fisher, P.F.; Comber, A.J.; Wadsworth, R. Land use and land cover: Contradiction or complement. In Re-Presenting GIS; Fisher, P., Unwin, D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 1–293. [Google Scholar]
- Di Traglia, F.; Fornaciai, A.; Favalli, M.; Nolesini, T.; Casagli, N. Catching Geomorphological Response to Volcanic Activity on Steep Slope Volcanoes Using Multi-Platform Remote Sensing. Remote Sens. 2020, 12, 438. [Google Scholar] [CrossRef] [Green Version]
- Tinti, S.; Mannucci, A.; Pagnoni, G.; Armigliato, A.; Zaniboni, F. The 30 December 2002 landslide-induced tsunamis in Stromboli: Sequence of the events reconstructed from the eyewitness accounts. Nat. Hazards Earth Syst. Sci. 2005, 5, 763–775. [Google Scholar] [CrossRef]
- Alleruzzo Di Maggio, M.T.; Formica, M.T.; Fornaro, A.; Gambino, J.C.; Pecora, A. La Casa Rurale Nella Sicilia Orientale, 2nd ed.; Leo, S., Ed.; Olschki Editore: Firenze, Italy, 2012. [Google Scholar]
- Lavigne, F.; Thouret, J.C. Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 2003, 49, 45–69. [Google Scholar] [CrossRef]
- Gran, K.B.; Montgomery, D.R. Spatial and temporal patterns in fluvial recovery following volcanic eruptions: Channel response to basin-wide sediment loading at Mount Pinatubo, Philippines. Geol. Soc. Am. Bull. 2005, 17, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Major, J.J.; Mark, L.E. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington. Geol. Soc. Am. Bull. 2006, 118, 938–958. [Google Scholar] [CrossRef]
- Pierson, T.C.; Pringle, P.T.; Cameron, K.A. Magnitude and timing of downstream channel aggradation and degradation in response to a dome-building eruption at Mount Hood, Oregon. GSA Bull. 2011, 123, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Wadge, G.; Cole, P.; Stinton, A.; Komorowski, J.C.; Stewart, R.; Toombs, A.C.; Legendre, Y. Rapid topographic change measured by high-resolution satellite radar at Soufriere Hills Volcano, Montserrat, 2008–2010. J. Volcanol. Geotherm. Res. 2011, 199, 142–152. [Google Scholar] [CrossRef]
- Kassouk, Z.; Thouret, J.C.; Gupta, A.; Solikhin, A.; Liew, S.C. Object-oriented classification of a high-spatial resolution SPOT5 image for mapping geology and landforms of active volcanoes: Semeru case study, Indonesia. Geomorphology 2014, 221, 18–33. [Google Scholar] [CrossRef]
- Thouret, J.C.; Oehler, J.F.; Gupta, A.; Solikhin, A.; Procter, J.N. Erosion and aggradation on persistently active volcanoes—A case study from Semeru Volcano, Indonesia. Bull. Volcanol. 2014, 76, 857. [Google Scholar] [CrossRef]
- Biass, S.; Falcone, J.L.; Bonadonna, C.; Di Traglia, F.; Pistolesi, M.; Rosi, M.; Lestuzzi, P. Great Balls of Fire: A probabilistic approach to quantify the hazard related to ballistics—A case study at La Fossa volcano, Vulcano Island, Italy. J. Volcanol. Geotherm. Res. 2016, 325, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Biass, S.; Bonadonna, C.; Di Traglia, F.; Pistolesi, M.; Rosi, M.; Lestuzzi, P. Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy. Bull. Volcanol. 2016, 78, 37. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Spampinato, L.; Lodato, L. The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. J. Volcanol. Geotherm. Res. 2006, 149, 160–175. [Google Scholar] [CrossRef]
- Salvatici, T.; Di Roberto, A.; Di Traglia, F.; Bisson, M.; Morelli, S.; Fidolini, F.; Bertagnini, A.; Pompilio, M.; Hungr, O.; Casagli, N. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli Volcano (Italy). Geomorphology 2016, 273, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Magnaghi, A. Il Progetto Locale, 1st ed.; Bollati Boringhieri: Torino, Italia, 2000. [Google Scholar]
- Magnaghi, A. Rappresentare i Luoghi: Metodi e Tecniche, 1st ed.; Alinea Editrice: Firenze, Italia, 2001. [Google Scholar]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire interactions in southern urope: Implication for landscape managment. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [Green Version]
- Vos, W. Recent landscape transformation in the Tuscan Apennines caused by changing land use. Landsc. Urban Plann. 1993, 24, 63–68. [Google Scholar] [CrossRef]
- Nagaike, T.; Kamitani, T. Factors affecting changes in a landscape structure dominated by both primary and coppice forests in the Fagus crenata forest region on central Japan. J. For. Res. 1997, 2, 193–198. [Google Scholar] [CrossRef]
- Luque, S.S. The challenge to manage the biological integrity of nature reserves: A landscape ecology perspective. Int. J. Remote Sens. 2000, 21, 2613–2643. [Google Scholar] [CrossRef]
- Blasi, C.; Milone, M.; Guida, D.; De Filippo, G.; Di Gennaro, A.; La Valva, V.; Nicoletti, D. Ecologia del paesaggio e qualità ambientale del Parco Nazionale del Cilento e Vallo di Diano. Doc. Territ. 2001, 46, 20–30. [Google Scholar]
- Blasi, C.; Fortini, P.; Carranza, M.L.; Frondoni, R.; Ricotta, C. Analisi della diversità del paesaggio vegetale e dei processi di recupero nella media valle dell’Aniene (Appennino centrale, Lazio). Fitosociologia 2001, 38, 3–11. [Google Scholar]
- Blasi, C.; Smiraglia, D.; Carranza, M.L. Analisi multitemporale del paesaggio e classificazione gerarchica del territorio: Il caso dei Monti Lepini (Italia centrale). Inf. Bot. Ital. 2003, 35, 31–40. [Google Scholar]
- Rothermel, R. How to Predict the Spread and Intensity of Forest and Range Fires; General Technical Report INT-143; USDA, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1983.
- Fernandes, P.; Botelho, H. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P. Forest fires in Galicia (Spain): The outcome of unbalanced fire management. J. For. Econ. 2008, 14, 155–157. [Google Scholar] [CrossRef]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
Acquisition date | 1 September 2018 13 June 2019 13 August 2019 8 October 2019 |
---|---|
Spatial resolution PAN (m) | 0.5 × 0.5 |
Spatial resolution MS (m) | 2 × 2 |
Cloud coverage (%) | <5 |
Spectral resolution (nm) | |
Blue | 450–550 |
Green | 490–610 |
Red | 600–720 |
Near infrared | 750–920 |
Band | Description | Wavelength (l) | Resolution (m) |
---|---|---|---|
1 | Coastal aerosol | 0.433–0.453 | 60 |
2 | Blu | 0.458–0.523 | 10 |
3 | Green | 0.543–0.578 | 10 |
4 | Red | 0.650–0.680 | 10 |
5 | Near InfraRed | 0.698–0.713 | 20 |
6 | Near InfraRed | 0.733–0.748 | 20 |
7 | Near InfraRed | 0.773–0.793 | 20 |
8 | Near InfraRed | 0.785–0.900 | 10 |
8A | Near InfraRed | 0.855–0.875 | 20 |
9 | Water vapor | 0.935–0.955 | 60 |
10 | ShortWave InfraRed–Cirrus | 1.365–1.385 | 60 |
11 | ShortWave InfraRed | 1.565–1.655 | 20 |
12 | ShortWave InfraRed | 2.100–2.280 | 20 |
LAND COVER | LAND USE |
---|---|
Artificial areas | Buildings |
Adjacent areas | |
Infrastructures | |
Urban green areas | |
Sport facilities | |
Industrial areas, public services, power stations | |
Airports, helipads, harbors | |
Landfills | |
Cemeteries | |
Archaeological areas | |
Agricultural areas | Vineyards |
Mixed agricultural woody crops (olive groves, citrus groves) | |
Ancient olive groves, shrubberies and Mediterranean bushes | |
Semi-natural vegetated areas | Uncultivated areas |
Shrubberies and Mediterranean bushes | |
Herbaceous and shrub vegetation evolving | |
Semi-natural not vegetated areas | Cliffs and rocks with poor or absent vegetation |
Lava and lapilli fields | |
Dunes, sands | |
Artificial rocks | |
Fire-damaged areas | Fire-damaged areas |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turchi, A.; Di Traglia, F.; Luti, T.; Olori, D.; Zetti, I.; Fanti, R. Environmental Aftermath of the 2019 Stromboli Eruption. Remote Sens. 2020, 12, 994. https://doi.org/10.3390/rs12060994
Turchi A, Di Traglia F, Luti T, Olori D, Zetti I, Fanti R. Environmental Aftermath of the 2019 Stromboli Eruption. Remote Sensing. 2020; 12(6):994. https://doi.org/10.3390/rs12060994
Chicago/Turabian StyleTurchi, Agnese, Federico Di Traglia, Tania Luti, Davide Olori, Iacopo Zetti, and Riccardo Fanti. 2020. "Environmental Aftermath of the 2019 Stromboli Eruption" Remote Sensing 12, no. 6: 994. https://doi.org/10.3390/rs12060994
APA StyleTurchi, A., Di Traglia, F., Luti, T., Olori, D., Zetti, I., & Fanti, R. (2020). Environmental Aftermath of the 2019 Stromboli Eruption. Remote Sensing, 12(6), 994. https://doi.org/10.3390/rs12060994