Urban Water Consumption at Multiple Spatial and Temporal Scales. A Review of Existing Datasets
Abstract
:1. Introduction
- Q1.
- How are the existing urban water demand datasets distributed across different spatial scales?
- Q2.
- How are the existing urban water demand datasets distributed across different temporal scales?
- Q3.
- What are the main domains of application of the reviewed datasets, within water demand modelling and management studies?
- Q4.
- What is the access policy for the reviewed datasets?
- Q5.
- Is there any synergy with comparable datasets in the electricity sector?
2. Datasets Review Methods
- We searched for the following combinations of keywords on Google Scholar and Mendeley: Water demand/Water consumption/Household water demand/Residential end use water/Residential water consumption/Residential water demand/Water demand data/Water demand dataset/Water demand data set/Water demand forecasting/Water demand city/Water demand district/Water end-use/Water consumption patterns/Domestic water use/Urban water demand/Water use behavior/District water demand.
- We searched for the following combinations of keywords on Mendeley Data and filtered the obtained results to include only two data types, i.e., “Dataset” and “Data Repositories”: Water demand/Water consumption/Household water consumption/End use water consumption/Urban water consumption/Urban water demand/District water demand/Water supply demand.
- We searched for open datasets in data.world, an online catalog for data and analysis. We restricted our research to datasets included in the data topic “water” and selected only datasets mentioned in peer-reviewed articles. More specifically, we searched for the following combinations of keywords: Water demand/Water consumption/Residential water consumption/Domestic water demand/Demand management.
Spatial and Temporal Scales of Interest
- City. We refer to a city as an urban centre with its own government and administration. The city scale can be composed of multiple districts and it includes the whole water distribution network.
- District. A district is a component of an urban center. The district spatial scale refers to a group of residential buildings in one or more municipalities. In many cases, districts coincide with the water network district meter areas (DMAs), i.e., sub-regions of a water network delimited by closing boundary valves. In the case of small cities or villages, the district and city scale can coincide.
- Household. The household scale implies a single dwelling, or a single-family residential building connected to an individual water meter. In this category we also include multi-family homes, when connected to one water meter. Depending on the type of household, its water consumption can be attributed to indoor usage only or both indoor and outdoor usage.
- End use. The end use scale refers to an individual water fixture within a single apartment/household. End uses can refer to indoor (e.g., shower, dishwasher, toilet, etc.) or outdoor uses (e.g., garden, swimming pool, etc.).
3. Overview of Dataset Search Outcome
4. Dataset Spatial Scales
5. Dataset Temporal Scales
6. Data Accessibility
- Restricted datasets are those WDDs that are available online either only for purchase, or by privately contacting authors/water utilities that own/have direct access to the data.
- Not available WDDs are those used and/or cited in the literature (primarily in papers published in the 1970s/80s/90s), but with no information on how to access them.
6.1. Household-Scale Datasets Accessibility
6.2. End Use-Scale Dataset Accessibility
7. Nexus Considerations: Outlook and Comparison with Datasets in the Electricity Sector
8. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huang, D.; Vairavamoorthy, K.; Tsegaye, S. Flexible design of urban water distribution networks. In Proceedings of the World Environmental and Water Resources Congress 2010: Challenges of Change—Proceedings of the World Environmental and Water Resources Congress 2010, Providence, RI, USA, 16–20 May 2010. [Google Scholar]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Maier, H.R.; Dandy, G.C.; Arora, M.; Castelletti, A. The changing nature of the water—Energy nexus in urban water supply systems: A critical review of changes and responses. J. Water Clim. Chang. 2020, 11, 1095–1122. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- Eggimann, S.; Mutzner, L.; Wani, O.; Schneider, M.Y.; Spuhler, D.; Moy De Vitry, M.; Beutler, P.; Maurer, M. The Potential of Knowing More: A Review of Data-Driven Urban Water Management. Environ. Sci. Technol. 2017, 51, 2538–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggioni, E. Water demand management in times of drought: What matters for water conservation. Water Resour. Res. 2015, 51, 125–139. [Google Scholar] [CrossRef]
- Stavenhagen, M.; Buurman, J.; Tortajada, C. Saving water in cities: Assessing policies for residential water demand management in four cities in Europe. Cities 2018, 79, 187–195. [Google Scholar] [CrossRef]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review. Environ. Model. Softw. 2015, 72, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Giurco, D.; Carrard, N.; McFallan, S.; Nalbantoglu, M.; Inman, M.; Thornton, N.; White, S. Residential End-Use Measurement Guidebook: A Guide to Study Design, Sampling and Technology; Technical Report; Institute for Sustainable Futures, UTS: Ultimo, Australia, 2008. [Google Scholar]
- Sharma, S.K.; Vairavamoorthy, K. Urban water demand management: Prospects and challenges for the developing countries. Water Environ. J. 2009, 23, 210–218. [Google Scholar] [CrossRef]
- House-Peters, L.A.; Chang, H. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Seifollahi-Aghmiuni, S.; Haddad, O.B.; Omid, M.H.; Mariño, M.A. Long-term efficiency of water networks with demand uncertainty. Proc. Inst. Civ. Eng. Water Manag. 2011, 164, 147–159. [Google Scholar] [CrossRef]
- De Souza, E.V.; Costa Da Silva, M.A. Management system for improving the efficiency of use water systems water supply. Procedia Eng. 2014, 70, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Mouatadid, S.; Adamowski, J. Using extreme learning machines for short-term urban water demand forecasting. Urban Water J. 2017, 14, 630–638. [Google Scholar] [CrossRef]
- Firat, M.; Turan, M.E.; Yurdusev, M.A. Comparative analysis of neural network techniques for predicting water consumption time series. J. Hydrol. 2010, 384, 46–51. [Google Scholar] [CrossRef]
- Herrera, M.; Torgo, L.; Izquierdo, J.; Pérez-García, R. Predictive models for forecasting hourly urban water demand. J. Hydrol. 2010, 387, 141–150. [Google Scholar] [CrossRef]
- Adamowski, J.; Fung Chan, H.; Prasher, S.O.; Ozga-Zielinski, B.; Sliusarieva, A. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Gurung, T.R.; Stewart, R.A.; Sharma, A.K.; Beal, C.D. Smart meters for enhanced water supply network modelling and infrastructure planning. Resour. Conserv. Recycl. 2014, 90, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Giurco, D.; Carrard, N.; Wang, X.; Inman, M.; Nguyen, M. Innovative Smart Metering Technology and Its Role in End-Use Measurement: Assessing Policy Measures on Addressing Urban Water Scarcity in Can Tho City in the Context of Climate Uncertainty and Urbanization View Project Developing a Truly Intelligent Water; Technical Report; Australian Water Association: Surfers Paradise, Australia, 2008. [Google Scholar]
- Monks, I.; Stewart, R.A.; Sahin, O.; Keller, R. Revealing unreported benefits of digital water metering: Literature review and expert opinions. Water 2019, 11, 838. [Google Scholar] [CrossRef] [Green Version]
- Cominola, A.; Spang, E.S.; Giuliani, M.; Castelletti, A.; Lund, J.R.; Loge, F.J. Segmentation analysis of residential water-electricity demand for customized demand-side management programs. J. Clean. Prod. 2018, 172, 1607–1619. [Google Scholar] [CrossRef]
- Britton, T.C.; Stewart, R.A.; O’Halloran, K.R. Smart metering: Enabler for rapid and effective post meter leakage identification and water loss management. J. Clean. Prod. 2013, 54, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, A.; Di Nardo, A.; Santonastaso, G.F.; Venticinque, S. An IoT system for monitoring and data collection of residential water end-use consumption. In Proceedings of the International Conference on Computer Communications and Networks, ICCCN, Valencia, Spain, 29 July–1 August 2019. [Google Scholar]
- Sønderlund, A.L.; Smith, J.R.; Hutton, C.J.; Kapelan, Z.; Savic, D. Effectiveness of smart meter-based consumption feedback in curbing household water use: Knowns and unknowns. J. Water Resour. Plan. Manag. 2016, 142, 04016060. [Google Scholar] [CrossRef] [Green Version]
- Stewart, R.A.; Nguyen, K.; Beal, C.; Zhang, H.; Sahin, O.; Bertone, E.; Vieira, A.S.; Castelletti, A.; Cominola, A.; Giuliani, M.; et al. Integrated intelligent water-energy metering systems and informatics: Visioning a digital multi-utility service provider. Environ. Model. Softw. 2018, 105, 94–117. [Google Scholar] [CrossRef]
- Blokker, E.J.; Vreeburg, J.H.; van Dijk, J.C. Simulating residential water demand with a stochastic end-use model. J. Water Resour. Plan. Manag. 2010, 136, 19–26. [Google Scholar] [CrossRef]
- Cominola, A.; Giuliani, M.; Castelletti, A.; Rosenberg, D.E.; Abdallah, A.M. Implications of data sampling resolution on water use simulation, end-use disaggregation, and demand management. Environ. Model. Softw. 2018, 102, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Gargano, R.; Di Palma, F.; de Marinis, G.; Granata, F.; Greco, R. A stochastic approach for the water demand of residential end users. Urban Water J. 2016, 13, 569–582. [Google Scholar] [CrossRef]
- Scheepers, H.M.; Jacobs, H.E. Simulating residential indoor water demand by means of a probability based end-use model. J. Water Supply Res. Technol.—AQUA 2014, 63, 476–488. [Google Scholar] [CrossRef]
- Carragher, B.J.; Stewart, R.A.; Beal, C.D. Quantifying the influence of residential water appliance efficiency on average day diurnal demand patterns at an end use level: A precursor to optimised water service infrastructure planning. Resour. Conserv. Recycl. 2012, 62, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Sønderlund, A.L.; Smith, J.R.; Hutton, C.; Kapelan, Z. Using smart meters for household water consumption feedback: Knowns and unknowns. Procedia Eng. 2014, 89, 990–997. [Google Scholar] [CrossRef] [Green Version]
- Pericli, A.; Jenkins, J.O. Review of Current Knowledge Smart Meters and Domestic Water Usage Cover Page Image © Thames Water Utilities Ltd Review of Current Knowledge; Technical Report; Foundation for Water Research: Marlow, NH, USA, 2015. [Google Scholar]
- Zuiderwijk, A.; Janssen, M. The Negative Effects of Open Government Data—Investigating the Dark Side of Open Data; ACM International Conference Proceeding Series; ACM: New York, NY, USA, 2014. [Google Scholar]
- Di Nardo, A.; Di Natale, M.; Santonastaso, G.F.; Tzatchkov, V.; Alcocer Yamanaka, V.H. Divide and conquer partitioning techniques for smart water networks. Procedia Eng. 2014, 89, 1176–1183. [Google Scholar] [CrossRef] [Green Version]
- Di Nardo, A.; Di Natale, M.; Di Mauro, A.; Martínez Díaz, E.; Blázquez Garcia, J.A.; Santonastaso, G.F.; Tuccinardi, F.P. An Advanced Software to Manage a Smart Water Network with Innovative Metrics and Tools Based on Social Network Theory. In Proceedings of the HIC 2018. 13th International Conference on Hydroinformatics, Palermo, Italy, 1–5 July 2018; Volume 3, pp. 582–592. [Google Scholar] [CrossRef] [Green Version]
- Knobloch, A.; Guth, N.; Klingel, P. Automated water balance calculation for water distribution systems. Procedia Eng. 2014, 89, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Massoud, T.; Zia, A. Dynamic management of water distribution networks based on hydraulic performance analysis of the system. Water Sci. Technol. Water Supply 2003, 3, 95–102. [Google Scholar] [CrossRef]
- Farah, E.; Shahrour, I. Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow. Water Resour. Manag. 2017, 31. [Google Scholar] [CrossRef]
- Bragalli, C.; Neri, M.; Toth, E. Effectiveness of smart meter-based urban water loss assessment in a real network with synchronous and incomplete readings. Environ. Model. Softw. 2019, 112, 128–142. [Google Scholar] [CrossRef]
- Mounce, S.R.; Boxall, J.B. Implementation of an on-line artificial intelligence district meter area flow meter data analysis system for abnormality detection: A case study. Water Sci. Technol. Water Supply 2010, 10, 437–444. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Gargano, R.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Performance of partitioned water distribution networks under spatial-temporal variability of water demand. Environ. Model. Softw. 2018, 101, 128–136. [Google Scholar] [CrossRef]
- Pullinger, M.; Anderson, B.; Browne, A.L.; Medd, W. New directions in understanding household water demand: A practices perspective. J. Water Supply Res. Technol.—AQUA 2013, 62, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Xenochristou, M.; Kapelan, Z.; Hutton, C.; Hofman, J. Smart Water Demand Forecasting: Learning from the Data. EasyChair. In Proceedings of the HIC 2018 13th International Conference on Hydroinformatics, Palermo, Italy, 1–5 July 2018; Volume 3, pp. 2351–2358. [Google Scholar]
- Salleh, N.S.M.; Rasmani, K.A.; Jamil, N.I. The Effect of Variations in Micro-components of Domestic Water Consumption Data on the Classification of Excessive Water Usage. Procedia—Soc. Behav. Sci. 2015, 195, 1865–1871. [Google Scholar] [CrossRef] [Green Version]
- Rathnayaka, K.; Malano, H.; Arora, M.; George, B.; Maheepala, S.; Nawarathna, B. Prediction of urban residential end-use water demands by integrating known and unknown water demand drivers at multiple scales I: Model development. Resour. Conserv. Recycl. 2017, 117, 85–92. [Google Scholar] [CrossRef]
- Billings, R.B.; Day, W.M. Demand management factors in residential water use: The southern Arizona experience. J. Am. Water Work. Assoc. 1989, 81, 58–64. [Google Scholar] [CrossRef]
- Kenney, D.S.; Goemans, C.; Klein, R.; Lowrey, J.; Reidy, K. Residential water demand management: Lessons from Aurora, Colorado. J. Am. Water Resour. Assoc. 2008, 44, 192–207. [Google Scholar] [CrossRef]
- Rees, P.; Clark, S.; Nawaz, R. Household Forecasts for the Planning of Long-Term Domestic Water Demand: Application to London and the Thames Valley. Popul. Space Place 2020, 26, e2288. [Google Scholar] [CrossRef]
- Di Mauro, A.; Cominola, A.; Castelletti, A.; Di Nardo, A. [Database] Urban Water Consumption at Multiple Spatial and Temporal Scales. A Review of Existing Datasets. 2020. Available online: https://doi.org/10.5281/zenodo.4390460 (accessed on 23 December 2020).
- Hernandez, E.; Hoagland, S.; Ormsbee, L.E. WDSRD: A Database for Research Applications. University of Kentucky Libraries. 2016. Available online: https://uknowledge.uky.edu/wdsrd/ (accessed on 10 December 2020).
- Di Nardo, A.; Di Natale, M.; Di Mauro, A.; Martínez Díaz, E.; Blázquez Garcia, J.A.; Santonastaso, G.F.; Tuccinardi, F.P. An advanced software to design automatically permanent partitioning of a water distribution network. Urban Water J. 2020, 17, 259–265. [Google Scholar] [CrossRef]
- Aral, M.M.; Guan, J.; Maslia, M.L.; Grayman, W.M. Optimization model and algorithms for design of water sensor placement in water distribution systems. In Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium 2006, Cincinnati, OH, USA, 27–30 August 2006. [Google Scholar]
- Casillas, M.V.; Puig, V.; Garza-Castañón, L.E.; Rosich, A. Optimal sensor placement for leak location in water distribution networks using genetic algorithms. Sensors 2013, 13, 14984–15005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, P.W.; Deoreo, W.B.; Opitz, E.M.; Kiefer, J.C.; Davis, W.Y.; Dziegielewski, B.; Nelson, J.O. Residential End Uses of Water; Aquacraft, Inc. Water Engineering and Management: Boulder, CO, USA, 1999. [Google Scholar]
- Gilbertson, M.; Hurlimann, A.; Dolnicar, S. Does water context influence behaviour and attitudes to water conservation? Australas. J. Environ. Manag. 2011, 18. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.M.; Wilby, R.L. Quantifying Household Water Demand: A Review of Theory and Practice in the UK. Water Resour. Manag. 2013, 27, 981–1011. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, B.; Graymore, M.; O’Toole, K. Household water use behavior: An integrated model. J. Environ. Manag. 2009, 91, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Fielding, K.S.; Russell, S.; Spinks, A.; Mankad, A. Determinants of household water conservation: The role of demographic, infrastructure, behavior, and psychosocial variables. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.V.; Knoeri, C. Exploring the psychosocial and behavioural determinants of household water conservation and intention. Int. J. Water Resour. Dev. 2019, 36, 940–955. [Google Scholar] [CrossRef] [Green Version]
- Willis, R.M.; Stewart, R.A.; Giurco, D.P.; Talebpour, M.R.; Mousavinejad, A. End use water consumption in households: Impact of socio-demographic factors and efficient devices. J. Clean. Prod. 2013, 60, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Mukheibir, P. Digital metering feedback and changes in water consumption—A review. Resour. Conserv. Recycl. 2018, 134, 136–148. [Google Scholar] [CrossRef]
- Rahim, M.S.; Nguyen, K.A.; Stewart, R.A.; Giurco, D.; Blumenstein, M. Machine learning and data analytic techniques in digitalwater metering: A review. Water 2020, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Cole, G.; Stewart, R.A. Smart meter enabled disaggregation of urban peak water demand: Precursor to effective urban water planning. Urban Water J. 2013, 10, 174–194. [Google Scholar] [CrossRef] [Green Version]
- Tanverakul, S.A.; Lee, J. Residential water demand analysis due to water meter installation in California. In World Environmental and Water Resources Congress 2013: Showcasing the Future—Proceedings of the 2013 Congress; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2013; pp. 936–945. [Google Scholar]
- Duerr, I.; Merrill, H.R.; Wang, C.; Bai, R.; Boyer, M.; Dukes, M.D.; Bliznyuk, N. Forecasting urban household water demand with statistical and machine learning methods using large space-time data: A Comparative study. Environ. Model. Softw. 2018, 102, 29–38. [Google Scholar] [CrossRef]
- Srinivasan, V.; Stankovic, J.; Whitehouse, K. WaterSense: Water Flow Disaggregation Using Motion Sensors. In Proceedings of the Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Seattle, WA, USA, 1–4 November 2011. [Google Scholar]
- Kozlovskiy, I.; Schöb, S.; Sodenkamp, M. Non-intrusive disaggregation of water consumption data in a residential household. In Lecture Notes in Informatics (LNI), Proceedings—Series of the Gesellschaft fur Informatik (GI); Gesellschaft fur Informatik (GI): Bremen, Germany, 2016; Volume P-259, pp. 1381–1387. [Google Scholar]
- Vitter, J.S.; Webber, M. Water Event Categorization Using Sub-Metered Water and Coincident Electricity Data. Water 2018, 10, 714. [Google Scholar] [CrossRef] [Green Version]
- Pesantez, J.E.; Berglund, E.Z.; Kaza, N. Smart meters data for modeling and forecasting water demand at the user-level. Environ. Model. Softw. 2020, 125, 104633. [Google Scholar] [CrossRef]
- Loh, M.; Coghlan, P. Domestic Water Use Study. In Perth, Western Australia 1998–2001. Hydro 2000: Interactive Hydrology; Institution of Engineers: Barton, Australia, 2003; p. 36. [Google Scholar]
- Nawaz, R.; Rees, P.; Clark, S.; Mitchell, G.; McDonald, A.; Kalamandeen, M.; Lambert, C.; Henderson, R. Long-Term Projections of Domestic Water Demand: A Case Study of London and the Thames Valley. J. Water Resour. Plan. Manag. 2019, 145, 05019017. [Google Scholar] [CrossRef] [Green Version]
- Zounemat-Kermani, M.; Matta, E.; Cominola, A.; Xia, X.; Zhang, Q.; Liang, Q.; Hinkelmann, R. Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects. J. Hydrol. 2020. [Google Scholar] [CrossRef]
- Joo, J.C.; Oh, H.J.; Ahn, H.; Ahn, C.H.; Lee, S.; Ko, K.R. Field application of waterworks automated meter reading systems and analysis of household water consumption. Desalin. Water Treat. 2015, 54, 1401–1409. [Google Scholar] [CrossRef]
- Loureiro, D.; Rebelo, M.; Mamade, A.; Vieira, P.; Ribeiro, R. Linking water consumption smart metering with census data to improve demand management. Water Sci. Technol. Water Supply 2015, 15, 1396–1404. [Google Scholar] [CrossRef] [Green Version]
- Lee, J. Residential water demand analysis of a Low-Income Rate Assistance Program in California, United States. Water Environ. J. 2016, 30, 49–61. [Google Scholar] [CrossRef]
- Rizzoli, A.E.; Castelletti, A.; Cominola, A.; Fraternali, P.; Diniz Dos Santos, A.; Storni, B.; Wissmann-Alves, R.; Bertocchi, M.; Novak, J.; Micheel, I. The SmartH2O project and the role of social computing in promoting efficient residential water use: A first analysis. In Proceedings of the 7th International Congress on Environmental Modelling and Software: Bold Visions for Environmental Modeling, iEMSs 2014, San Diego, CA, USA, 15–19 June 2014; Volume 3, pp. 1559–1567. [Google Scholar]
- Liu, A.; Giurco, D.; Mukheibir, P. Urban water conservation through customised water and end-use information. J. Clean. Prod. 2016, 112, 3164–3175. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Stewart, R.A.; Zhang, H.; Sahin, O.; Siriwardene, N. Re-engineering traditional urban water management practices with smart metering and informatics. Environ. Model. Softw. 2018, 101, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Cardell-Oliver, R. Discovering water use activities for smart metering. In Proceedings of the 2013 IEEE 8th International Conference on Intelligent Sensors, Sensor Networks and Information Processing: Sensing the Future, ISSNIP 2013, Melbourne, Australia, 2–5 April 2013; Volume 1, pp. 171–176. [Google Scholar]
- Meyer, B.E.; Jacobs, H.E.; Ilemobade, A. Extracting household water use event characteristics from rudimentary data. J. Water Supply Res. Technol.—AQUA 2020, 69, 387–397. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Zhang, H.; Stewart, R.A. Application of dynamic time warping algorithm in prototype selection for the disaggregation of domestic water flow data into end use events. In Proceedings of the 34th IAHR Congress 2011—Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering, Brisbane, Australia, 26 June–1 July 2011. [Google Scholar]
- Bennett, C.; Stewart, R.A.; Beal, C.D. ANN-based residential water end-use demand forecasting model. Expert Syst. Appl. 2013, 40, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- Willis, R.; Stewart, R.A.; Panuwatwanich, K.; Capati, B.; Giurco, D. Gold coast domestic water end use study. Water 2009, 36, 84–90. [Google Scholar]
- Beal, C.; Makki, A.; Stewart, R. Identifying the Drivers of Water Consumption: A Summary of Results from the South East Queensland Residential End Use Study. Sci. Forum Stakehold. Engag. Build. Linkages, Collab. Sci. Qual. 2011, 126–132. [Google Scholar]
- Heinrich, M. Water End-Use and Efficiency Project (Weep)—A Case Study. In Proceedings of the SB07 Transforming Our Built Environment, Auckland, New Zealand, 14–16 November 2007; Volume 136, p. 8. [Google Scholar]
- Suero, F.J.; Mayer, P.W.; Rosenberg, D.E. Estimating and Verifying United States Households’ Potential to Conserve Water. J. Water Resour. Plan. Manag. 2012, 138, 299–306. [Google Scholar] [CrossRef]
- Gato-Trinidad, S.; Jayasuriya, N.; Roberts, P. Understanding urban residential end uses of water. Water Sci. Technol. 2011, 64, 36–42. [Google Scholar] [CrossRef]
- Walton, A.; Hume, M. Creating positive habits in water conservation: The case of the Queensland Water Commission and the Target 140 campaign. Int. J. Nonprofit Volunt. Sect. Mark. 2011, 16, 215–224. [Google Scholar] [CrossRef]
- Liu, A.; Giurco, D.; Mukheibir, P. Advancing household water-use feedback to inform customer behaviour for sustainable urban water. Water Sci. Technol. Water Supply 2017, 17, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Cassuto, A.E.; Ryan, S. Effect of price on the residential demand for water within an agency. JAWRA J. Am. Water Resour. Assoc. 1979, 15, 345–353. [Google Scholar] [CrossRef]
- Russac, D.A.; Rushton, K.R.; Simpson, R.J. Insights into Domestic Demand from a Metering Trial. Water Environ. J. 1991, 5, 342–351. [Google Scholar] [CrossRef]
- Molino, B.; Rasulo, G.; Taglialatela, L. Peak coefficients of household potable water supply. Water Resour. Manag. 1991, 4, 283–291. [Google Scholar] [CrossRef]
- Alvisi, S.; Franchini, M.; Marinelli, A. A stochastic model for representing drinking water demand at residential level. Water Resour. Manag. 2003, 17, 197–222. [Google Scholar] [CrossRef]
- Gato, S.; Jayasuriya, N.; Hadgraft, R.; Roberts, P. A simple time series approach to modelling urban water demand. Australas. J. Water Resour. 2005, 8, 153–164. [Google Scholar] [CrossRef]
- Worthington, A.C.; Higgs, H.; Hoffmann, M. Residential water demand modeling in Queensland, Australia: A comparative panel data approach. Water Policy 2009, 11, 427–441. [Google Scholar] [CrossRef] [Green Version]
- Gato-Trinidad, S.; Gan, K. Characterizing maximum residential water demand. WIT Trans. Built Environ. 2011, 122, 15–24. [Google Scholar]
- Bakker, M.; Vreeburg, J.H.; van Schagen, K.M.; Rietveld, L.C. A fully adaptive forecasting model for short-term drinking water demand. Environ. Model. Softw. 2013, 48, 141–151. [Google Scholar] [CrossRef]
- Jolly, M.D.; Lothes, A.D.; Bryson, L.S.; Ormsbee, L. Research database of water distribution system models. J. Water Resour. Plan. Manag. 2014, 140, 410–416. [Google Scholar] [CrossRef]
- Boracchi, G.; Roveri, M. Exploiting self-similarity for change detection. In Proceedings of the International Joint Conference on Neural Networks, Beijing, China, 6–11 July 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 3339–3346. [Google Scholar]
- Ji, G.; Wang, J.; Ge, Y.; Liu, H. Urban water demand forecasting by LS-SVM with tuning based on elitist teaching-learning-based optimization. In Proceedings of the 26th Chinese Control and Decision Conference, CCDC 2014, Changsha, China, 31 May–2 June 2014; pp. 3997–4002. [Google Scholar]
- Avni, N.; Fishbain, B.; Shamir, U. Water consumption patterns as a basis for water demand modeling. Water Resour. Res. 2015, 51, 8165–8181. [Google Scholar] [CrossRef] [Green Version]
- Vries, D.; Van Den Akker, B.; Vonk, E.; De Jong, W.; Van Summeren, J. Application of machine learning techniques to predict anomalies in water supply networks. Water Sci. Technol. Water Supply 2016, 16, 1528–1535. [Google Scholar] [CrossRef]
- Leyli-Abadi, M.; Samé, A.; Oukhellou, L.; Cheifetz, N.; Mandel, P.; Féliers, C.; Chesneau, O. Predictive classification of water consumption time series using non-homogeneous markov models. In Proceedings of the 2017 International Conference on Data Science and Advanced Analytics, DSAA 2017, Tokyo, Japan, 19–21 October 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; Volume 2018-January, pp. 323–331. [Google Scholar]
- Quesnel, K.J.; Ajami, N.K. Changes in water consumption linked to heavy news media coverage of extreme climatic events. Sci. Adv. 2017, 3, e1700784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Nardo, A.; Di Natale, M.; Di Mauro, A.; Santonastaso, G.F.; Palomba, A.; Locoratolo, S. Calibration of a water distribution network with limited field measures: The case study of Castellammare di Stabia (Naples, Italy). In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2019; Volume 11353 LNCS, pp. 433–436. [Google Scholar]
- Smolak, K.; Kasieczka, B.; Fialkiewicz, W.; Rohm, W.; Siła-Nowicka, K.; Kopańczyk, K. Applying human mobility and water consumption data for short-term water demand forecasting using classical and machine learning models. Urban Water J. 2020, 17, 32–42. [Google Scholar] [CrossRef]
- Danielson, L.E. An analysis of residential demand for water using micro time-series data. Water Resour. Res. 1979, 15, 763–767. [Google Scholar] [CrossRef]
- Hamilton, L.C. Response to Water Conservation Campaigns: An Exploratory Look. Eval. Rev. 1982, 6, 673–688. [Google Scholar] [CrossRef]
- Buchberger, S.G.; Wells, G.J. Intensity, duration, and frequency of residential water demands. J. Water Resour. Plan. Manag. 1996, 122, 11–19. [Google Scholar] [CrossRef]
- Guercio, R.; Magini, R.; Pallavicini, I. Instantaneous residential water demand as stochastic point process. Prog. Water Resour. 2001, 129–138. [Google Scholar] [CrossRef]
- Silva-Araya, W.F.; Artiles-Léon, N.; Romero-Ramírez, M. Dynamic simulation of water distribution systems with instantaneous demands. In Water Studies; WITPress: Ashurst, UK, 2002; Volume 10, pp. 379–387. [Google Scholar]
- Buchberger, S.G.; Carter, J.; Lee, Y.; Schade, T. Random Demands, Travel Times and Water Quality in Dead-Ends, Prepared for American Water Works Association Research Foundation; Technical Report; Water Research Foundation: Denver, CO, USA, 2003. [Google Scholar]
- Moughton, L.J.; Buchberger, S.G.; Boccelli, D.L.; Filion, Y.R.; Karney, B.W. Effect of time step and data aggregation on cross correlation of residential demands. In Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium 2006, Cincinnati, OH, USA, 27–30 August 2007; p. 42. [Google Scholar]
- Magini, R.; Pallavicini, I.; Guercio, R. Spatial and temporal scaling properties of water demand. J. Water Resour. Plan. Manag. 2008, 134, 276–284. [Google Scholar] [CrossRef]
- Umapathi, S.; Chong, M.N.; Sharma, A.K. Evaluation of plumbed rainwater tanks in households for sustainable water resource management: A real-time monitoring study. J. Clean. Prod. 2013, 42, 204–214. [Google Scholar] [CrossRef]
- The-SmartH2O-Project. The SmartH2O Anonymized Datasets of Terre di Pedemonte and Valencia. 2017. Available online: https://zenodo.org/record/556152 (accessed on 10 December 2020).
- Shan, Y.; Yang, L.; Perren, K.; Zhang, Y. Household water consumption: Insight from a survey in Greece and Poland. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 119, pp. 1409–1418. [Google Scholar]
- Makwiza, C.; Jacobs, H.E. Assessing the impact of property size on residential water use for selected neighbourhoods in Lilongwe, Malawi. J. Water Sanit. Hyg. Dev. 2016, 6, 242–251. [Google Scholar] [CrossRef]
- March, H.; Morote, Á.F.; Rico, A.M.; Saurí, D. Household smart water metering in Spain: Insights from the experience of remote meter reading in alicante. Sustainability 2017, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Kossieris, P.; Makropoulos, C. Exploring the statistical and distributional properties of residential water demand at fine time scales. Water 2018, 10, 1481. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Chindarkar, N.; Zhao, J. Water and time use: Evidence from Kathmandu, Nepal. Water Policy 2019, 21, 76–100. [Google Scholar] [CrossRef]
- Randall, T.; Koech, R. Smart water metering technology for water management in urban areas. Water e-J. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Rees, P.; Clark, S.; Nawaz, R. Household Forecasts for the Planning of Long-Term Domestic Water Demand: Application to London and the Thames Valley—Dataset. University of Leeds. 2020. Available online: http://archive.researchdata.leeds.ac.uk/639/ (accessed on 10 December 2020).
- Butler, D. The influence of dwelling occupancy and day of the week on domestic appliance wastewater discharges. Build. Environ. 1993, 28, 73–79. [Google Scholar] [CrossRef]
- Edwards, K.; Martin, L. A Methodology for Surveying Domestic Water Consumption. Water Environ. J. 1995, 9, 477–488. [Google Scholar] [CrossRef]
- DeOreo, W.B.; Heaney, J.P.; Mayer, P.W. Flow trace analysis to access water use. J.—Am. Water Work. Assoc. 1996, 88, 79–90. [Google Scholar] [CrossRef]
- Mayer, P.W.; DeOreo, W.B.; Lewis, D.M. Seattle Home Water Conservation Study the Impacts of High Efficiency Plumbing Fixture Retrofits in Single Family Homes. In Environmental Protection; Aquacraft Inc.: Boulder, CO, USA, 2000; p. 170. [Google Scholar]
- Mayer, P.W.; DeOreo, W.B.; Lewis, D.M. Residential Indoor Water Conservation Study: Evaluation of High Efficiency Indoor Plumping Fixture Retrofits in Single Family Homes in the East Bay Municipal Utility District Service Area; Technical Report; Aquacraft, Inc. Water Engineering and Management: Boulder, CO, USA, 2003. [Google Scholar]
- Mayer, P.; DeOreo, W.; Towler, E.; Martien, L.; Lewis, D. Tampa Water Department rEsidential Water Conservation Study: The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes; Aquacraft, Inc. Water Engineering and Management: Boulder, CO, USA, 2004. [Google Scholar]
- Roberts, P. Yarra Valley Water 2004 Residential End Use Measurement Study; Yarra Valley Water: Melbourne, Australia, 2005. [Google Scholar]
- Kim, S.H.; Choi, S.H.; Koo, J.Y.; Choi, S.I.; Hyun, I.H. Trend analysis of domestic water consumption depending upon social, cultural, economic parameters. Water Sci. Technol. Water Supply 2007, 7, 61–68. [Google Scholar] [CrossRef]
- Froehlich, J.E.; Larson, E.; Campbell, T.; Haggerty, C.; Fogarty, J.; Patel, S.N. HydroSense: Infrastructure-mediated single-point sensing of whole-home water activity. In Proceedings of the 11th International Conference on Ubiquitous Computing, Orlando, FL, USA, 30 September–3 October 2009. [Google Scholar]
- Heinrich, M.; Roberti, H. Auckland Water Use Study: Monitoring of Residential Water End Uses. In Proceedings of the CIB SB10 New Zealand, Nelson, New Zealand, 26–28 May 2010. [Google Scholar]
- Beal, C.D.; Stewart, R.A.; Huang, T.; Rey, E. SEQ residential end use study. In Smart Water Systems & Metering; Urban Water Security Research Alliance: Brisbane, Australia, 2011. [Google Scholar]
- South East Queensland Residential End Use Study. Dataset. South East Queensland Residential End Use Study. 2011. Available online: https://code.google.com/archive/p/smart-meter-information-portal/downloads (accessed on 10 December 2020).
- Otaki, Y.; Otaki, M.; Sugihara, H.; Mathurasa, L.; Pengchai, P.; Aramaki, T. Comparison of residential indoor water consumption patterns in Chiang Mai and Khon Kaen, Thailand. J.—Am. Water Work. Assoc. 2011, 103, 104–110. [Google Scholar] [CrossRef]
- MidCoast-Water. Smart Meter Water Usage Study Report for Pressure Management Group: Tea. Gardens and Hawks Nest; Technical Report; MidCoast Water: Taree, Australia, 2012. [Google Scholar]
- Lee, D.J.; Park, N.S.; Jeong, W. End-use analysis of household water by metering: The case study in Korea. Water Environ. J. 2012, 26, 455–464. [Google Scholar] [CrossRef]
- Borg, M.; Edwards, O.; Kimpel, S. A Study of Individual Household Water Consumption. Univ. Calif. Davis Water Manag. Res. Inst. 2013, 7, 2017. [Google Scholar]
- Neunteufel, R.; Richard, L.; Perfler, R. Water demand: The Austrian end-use study and conclusions for the future. Water Sci. Technol. Water Supply 2014, 14, 205–211. [Google Scholar] [CrossRef]
- Gurung, T.R.; Stewart, R.A.; Beal, C.D.; Sharma, A.K. Smart meter enabled water end-use demand data: Platform for the enhanced infrastructure planning of contemporary urban water supply networks. J. Clean. Prod. 2015, 87, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Rathnayaka, K.; Malano, H.; Maheepala, S.; George, B.; Nawarathna, B.; Arora, M.; Roberts, P. Seasonal demand dynamics of residential water end-uses. Water 2015, 7, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.A.; Stewart, R.A.; Zhang, H.; Jones, C. Intelligent autonomous system for residential water end use classification: Autoflow. Appl. Soft Comput. J. 2015, 31, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Makonin, S.; Ellert, B.; Bajić, I.V.; Popowich, F. Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Sci. Data 2016, 3, 160037. [Google Scholar] [CrossRef] [Green Version]
- Makonin, S. AMPds2: The Almanac of Minutely Power Dataset (Version 2). 2016. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FIE0S4 (accessed on 10 December 2020).
- DeOreo, W.B.; Mayer, P.; Dziegielewski, B.; Hazen, J.K.; Sawyer, P.C. Residential End Uses of Water, Version 2; Technical Report; Water Research Foundation: Denver, Co, USA, 2016; Available online: https://www.waterrf.org/research/projects/residential-end-uses-water-version-2 (accessed on 10 December 2020).
- Carranza, J.C.I.; Morales, R.D.; Sánchez, J.A. Pattern recognition in residential end uses of water using artificial neural networks and other machine-learning techniques. In Proceedings of the CCWI 2017—15th International Conference on Computing and Control for the Water Industry, Sheffield, UK, 5–7 September 2017. [Google Scholar]
- Vitter, J.S., Jr.; Leibowicz, B.; Webber, M.; Deetjen, T.; Berhanu, B. Data for: Optimal Sizing and Dispatch for a Community-Scale Potable Water Recycling Facility, Mendeley Data, V1, 2018. Available online: https://data.mendeley.com/datasets/5bvmy4kj25/1 (accessed on 10 December 2020).
- Kofinas, D.T.; Spyropoulou, A.; Laspidou, C.S. A methodology for synthetic household water consumption data generation. Environ. Model. Softw. 2018, 100, 48–66. [Google Scholar] [CrossRef]
- EC FP7 project ISS-EWATUS. Dataset. Integrated Support System for Efficient Water Usage and Resources Management. Website under Maintenance. 2016. Available online: validation.issewatus.eu/data-re-use/ (accessed on 10 December 2020).
- Clifford, E.; Mulligan, S.; Comer, J.; Hannon, L. Flow-Signature Analysis of Water Consumption in Nonresidential Building Water Networks Using High-Resolution and Medium-Resolution Smart Meter Data: Two Case Studies. Water Resour. Res. 2018, 54, 88–106. [Google Scholar] [CrossRef]
- Omaghomi, T.; Buchberger, S.; Cole, D.; Hewitt, J.; Wolfe, T. Probability of Water Fixture Use during Peak Hour in Residential Buildings. J. Water Resour. Plan. Manag. 2020, 146, 04020027. [Google Scholar] [CrossRef]
- Pacheco, C.J.; Horsburgh, J.S.; Tracy, J.R. A low-cost, open source monitoring system for collecting high temporal resolution water use data on magnetically driven residential water meters. Sensors 2020, 20, 3655. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, A.; Di Nardo, A.; Santonastaso, G.F.; Venticinque, S. Development of an IoT System for the Generation of a Database of Residential Water End-Use Consumption Time Series. Environ. Sci. Proc. 2020, 2, 2020. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Stewart, R.A.; Zhang, H. An autonomous and intelligent expert system for residential water end-use classification. Expert Syst. Appl. 2014, 41, 342–356. [Google Scholar] [CrossRef] [Green Version]
- Makki, A.A.; Stewart, R.A.; Beal, C.D.; Panuwatwanich, K. Novel bottom-up urban water demand forecasting model: Revealing the determinants, drivers and predictors of residential indoor end-use consumption. Resour. Conserv. Recycl. 2015, 95, 15–37. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Jabaloyes, L.; Arregui, F.J.; Cobacho, R. Water end use disaggregation based on soft computing techniques. Water 2018, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Godoy, D.; Amandi, A. A conceptual clustering approach for user profiling in personal information agents. AI Commun. 2006, 19, 207–227. [Google Scholar]
- Cominola, A.; Nguyen, K.; Giuliani, M.; Stewart, R.A.; Maier, H.R.; Castelletti, A. Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data. Water Resour. Res. 2019, 55, 9315–9333. [Google Scholar] [CrossRef] [Green Version]
- Cufoglu, A. User Profiling—A Short Review. Int. J. Comput. Appl. 2014, 108, 1–9. [Google Scholar] [CrossRef]
- Kanoje, S.; Girase, S.; Mukhopadhyay, D. User Profiling Trends, Techniques and Applications. Int. J. Adv. Found. Res. Comput. 2014, 1, 2348–4853. [Google Scholar]
- Beckel, C.; Sadamori, L.; Staake, T.; Santini, S. Revealing household characteristics from smart meter data. Energy 2014, 78, 397–410. [Google Scholar] [CrossRef] [Green Version]
- Stagge, J.H.; Rosenberg, D.E.; Abdallah, A.M.; Akbar, H.; Attallah, N.A.; James, R. Assessing data availability and research reproducibility in hydrology and water resources. Sci. Data 2019, 6, 190030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trabucchi, D.; Buganza, T. Data-driven innovation: Switching the perspective on Big Data. Eur. J. Innov. Manag. 2019, 22, 23–40. [Google Scholar] [CrossRef]
- Adamala, S. An Overview of Big Data Applications in Water Resources Engineering. Mach. Learn. Res. 2017, 2, 10–18. [Google Scholar]
- Van Tuyl, S.; Whitmire, A.L. Water, water, everywhere: Defining and assessing data sharing in Academia. PLoS ONE 2016, 11, e0147942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zipper, S.C.; Stack Whitney, K.; Deines, J.M.; Befus, K.M.; Bhatia, U.; Albers, S.J.; Beecher, J.; Brelsford, C.; Garcia, M.; Gleeson, T.; et al. Balancing Open Science and Data Privacy in the Water Sciences. Water Resour. Res. 2019, 55, 5202–5211. [Google Scholar] [CrossRef]
- Fernandes, F.; Morais, H.; Faria, P.; Vale, Z.; Ramos, C. SCADA house intelligent management for energy efficiency analysis in domestic consumers. In Proceedings of the 2013 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT LA 2013, Washington, DC, USA, 24–27 February 2013. [Google Scholar]
- Cominola, A.; Ghetti, A.; Castelletti, A. Building an open high-resolution residential water end-use dataset with non-intrusive metering, intrusive metering, and water use diaries. In Proceedings of the Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, 8–13 April 2018. [Google Scholar]
- Giurco, D.P.; White, S.B.; Stewart, R.A. Smart metering and water end-use data: Conservation benefits and privacy risks. Water 2010, 2, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Cominola, A.; Giuliani, M.; Castelletti, A.; Abdallah, A.M.; Rosenberg, D.E. Developing a stochastic simulation model for the generation of residential water end-use demand time series. In Proceedings of the 8th International Congress on Environmental Modelling and Software, Toulouse, France, 10–14 July 2016. [Google Scholar]
- Mostafavi, N.; Gándara, F.; Hoque, S. Predicting water consumption from energy data: Modeling the residential energy and water nexus in the integrated urban metabolism analysis tool (IUMAT). Energy Build. 2018, 158, 1683–1693. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, H.; Stewart, R.A.; Nguyen, K.A. Water end use clustering using hybrid pattern recognition techniques—Artificial Bee Colony, Dynamic Time Warping and K-Medoids clustering. Int. J. Mach. Learn. Comput. 2018, 8, 483–487. [Google Scholar]
- Nguyen, K.; Zhang, H.; Stewart, R.A. Development of an intelligent model to categorise residential water end use events. J. Hydro-Environ. Res. 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Chini, C.M.; Stillwell, A.S. The metabolism of U.S. cities 2.0. J. Ind. Ecol. 2019, 23, 1353–1362. [Google Scholar] [CrossRef]
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A review of the water-energy nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- Klemenjak, C.; Makonin, S.; Elmenreich, W. Towards comparability in non-intrusive load monitoring: On data and performance evaluation. In Proceedings of the 2020 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2020, Washington, DC, USA, 17–20 February 2020. [Google Scholar]
- McCartney, D. Water Power: Measuring Household Water and Energy Intensity. Technical Report. 2016. Available online: http://blogs.edf.org/texascleanairmatters/files/2016/10/Water-Power-Measuring-Household-Water-and-Energy-Intensity.pdf (accessed on 10 December 2020).
- Barai, G.R.; Krishnan, S.; Venkatesh, B. Smart metering and functionalities of smart meters in smart grid—A review. In Proceedings of the 2015 IEEE Electrical Power and Energy Conference: Smarter Resilient Power Systems, EPEC 2015, London, ON, Canada, 26–28 October 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 138–145. [Google Scholar]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. A Hybrid Signature-based Iterative Disaggregation algorithm for Non-Intrusive Load Monitoring. Appl. Energy 2017, 185, 331–344. [Google Scholar] [CrossRef]
- Voulis, N.; Warnier, M.; Brazier, F.M. Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach. Appl. Energy 2018, 230. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Alahakoon, D.; Yu, X. Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey. IEEE Trans. Ind. Inf. 2016, 12, 425–436. [Google Scholar] [CrossRef]
- Han, W.; Ang, L. Analysis of the Use of Smart Meter Data by Energy Companies in Various Countries. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2018; Volume 439. [Google Scholar]
- Yun, J.; Lee, S.S.; Ahn, I.Y.; Song, M.H.; Ryu, M.W. Monitoring and control of energy consumption using smart sockets and smartphones. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 339. [Google Scholar]
- Abubakar, I.; Khalid, S.N.; Mustafa, M.W.; Shareef, H.; Mustapha, M. Application of load monitoring in appliances’ energy management—A review. Renew. Sustain. Energy Rev. 2017, 67, 235–245. [Google Scholar] [CrossRef]
- Najafi, B.; Moaveninejad, S.; Rinaldi, F. Data Analytics for Energy Disaggregation: Methods and Applications. In Big Data Application in Power Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 377–408. [Google Scholar]
- Zhuang, M.; Shahidehpour, M.; Li, Z. An Overview of Non-Intrusive Load Monitoring: Approaches, Business Applications, and Challenges. In Proceedings of the 2018 International Conference on Power System Technology, POWERCON 2018—Proceedings, Guangzhou, China, 6–8 November 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 4291–4299. [Google Scholar]
- Froehlich, J.; Larson, E.; Gupta, S.; Cohn, G.; Reynolds, M.; Patel, S. Disaggregated end-use energy sensing for the smart grid. IEEE Pervasive Comput. 2011, 10, 28–39. [Google Scholar] [CrossRef]
- Ellert, B.; Makonin, S.; Popowich, F. Appliance water disaggregation via non-intrusive load monitoring (NILM). In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rustad, M.L.; Koenig, T.H. Towards a Global Data Privacy Standard. Fla. Law Rev. 2019, 71, 365–454. [Google Scholar]
- Nieswiadomy, M.L.; Molina, D.J. Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates Using Household Data. Land Econ. 1989, 65, 280. [Google Scholar] [CrossRef]
- Glenn, D.T.; Endter-Wada, J.; Kjelgren, R.; Neale, C.M. Tools for evaluating and monitoring effectiveness of urban landscape water conservation interventions and programs. Landsc. Urban Plan. 2015, 139, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Mini, C.; Hogue, T.S.; Pincetl, S. The effectiveness of water conservation measures on summer residential water use in Los Angeles, California. Resour. Conserv. Recycl. 2015, 94, 136–145. [Google Scholar] [CrossRef]
- Porse, E.; Mika, K.B.; Litvak, E.; Manago, K.F.; Naik, K.; Glickfeld, M.; Hogue, T.S.; Gold, M.; Pataki, D.E.; Pincetl, S. Systems Analysis and Optimization of Local Water Supplies in Los Angeles. J. Water Resour. Plan. Manag. 2017, 143, 04017049. [Google Scholar] [CrossRef] [Green Version]
- Gal, M.S.; Rubinfeld, D.L. Data standardization. N. Y. Univ. Law Rev. 2019, 94, 737–770. [Google Scholar] [CrossRef]
- Rahm, E.; Do, H. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 2000, 23, 3–13. [Google Scholar]
Dataset Name | Authors | Year | Location | Dataset Size | Time Series Lenght | Time Sampling Resolution | Access Policy | Goal and Applications |
---|---|---|---|---|---|---|---|---|
/ | Cassuto, A, et al. [91] | 1979 | United States | 1 districts | 5 years (January 1970–December 1975) | 1 month | R | SD |
/ | Billings, R.B., et al. [47] | 1989 | United States | 3 districts in Tucson Arizona | 1974 and 1980 | 1 month | R | WDNO |
/ | Russac, D.A.V., et al. [92] | 1991 | United Kingdom | 1 district in Potters Bar | 3 months (1 April–30 June 1989) | day | R | WDNO |
/ | Molino, B., et al. [93] | 1991 | Italy | 2 districts in Naples | 3 year | 1 s | R | WDNO |
/ | Alvisi, S., et al. [94] | 2003 | Italy | 8 districts in Castelfranco Emilia | 1 year (2000) | 1 min | R | WDNO |
/ | Gato, S., et al. [95] | 2005 | Australia | 1 district in East Doncaster | 10 years (April 1991–April 2001) | 1 day | R | WDNO |
/ | Worthington, A.C., et al. [96] | 2009 | Australia | 1 district in Queensland local govermenets | 10 years (1994 to 2004) | 1 month | R | WDNO |
/ | Mounce, S.R., et al. [41] | 2010 | United Kingdom | 146 DMAs | 1 year (2008) | 30 min | R | DMAD |
/ | Gato-Trinidad, S., et al. [97] | 2011 | Australia | 5 districts in Greater Melbourne | 1 year | 5 min | R | WDNO |
/ | Bakker, M., et al. [98] | 2013 | Netherland | 6 DMAs | 5 years (2006 to 2011) | 15 min | R | WDNO |
/ | Jolly, M.D., et al. [99] and Hernandez, E., et al. [51] | 2014; 2016 | United States | First release: 12-district model Network Second release: more than 40-district model Network | / | / | O [51] | DMAD and WDNO |
/ | Boracchi, G., et al. [100] | 2014 | Spain | 10 Districts | 82 days | 10 min | R | LD |
/ | Ji, G., et al. [101] | 2014 | China | 1 DMA | 1 years | 1 h | R | WDN optimization |
/ | Avni, N., et al. [102] | 2015 | Israel | / | 19 year (1994–2012) | 1 month | R | WDNO |
/ | Vries, D., et al. [103] | 2016 | Netherlands | 6 DMAs | 1 year (2013–2014) | 5 min | R | LD |
/ | Gargano, R., et al. [29] | 2016 | Italy | 4 DMA in Piedimonte San Germano | 50 days | 1 min | R | WDNO |
/ | Leyli-Abadi, M., et al. [104] | 2017 | France | 1 district in Paris | 3 months (January–March 2014) | 1 h | R | WDNO |
/ | Quesnel, K.J., et al. [105] | 2017 | United States | 20 districts | 10 years (2005-2015) | 2 months | R | SD |
/ | Di Nardo, A., et al. [106] | 2019 | Italy | DMAs in Castellammare | 1 year (May 2016–2017) | / | R | DMAD |
/ | Smolak, K., et al. [107] | 2020 | Poland | 28 DMAs | 51 days (21 January–12 March 2018) | 10 min | R | WDNO |
Dataset Name | Authors | Year | Location | Dataset Size | Time Series Lenght | Time Sampling Resolution | Access Policy | Goal and Applications |
---|---|---|---|---|---|---|---|---|
/ | Danielson, L.E. [108] | 1979 | United States | 261 houses | 5 year (May 1969–December 1974) | 1 day | NA | WDF |
Concord, New Hampshire | Hamilton, L.C. [109] | 1982 | United States | 431 houses | 6 years (1975–1981) | 1 month | NA | WCCA |
/ | Buchberger, S.G., and Wells, G.J. [110] | 1996 | United States | 4 houses | 1 year (July 1993–June 1994) | 1 s | R | WDPR |
Ohio | Guercio, R., et al. [111] | 2001 | Italy | 85 houses | 2 weeks in January 2001; 2 weeks in April 2001 | 1 m | R | WDPR |
/ | Silva-Araya, W.F., et al. [112] | 2002 | Porto Rico | 4 houses | 1 week | 10 s | R | WDPR |
DWUS | Loh, M., and Coghlan, P. [71] | 2003 | Australia | 1 phase: 120 houses; 2 phase: 124 houses | 1 phase: 20 months (November 1998–June 2000); 2 phase: 14 months (September 2000–November 2001) | / | R | WDF |
/ | Buchberger, S.G., et al. [113] | 2003 | United States | 21 houses | 7 months (April–October 1998) | 1 s | R | WDPR |
/ | Moughton, L.J., et al. [114] | 2007 | United States | 21 houses | 36 week (March–November 1997) | 1 s | R | WDPR |
/ | Kenney, D.S., et al. [48] | 2008 | United States | 10,000 houses | 5 years (2000–2005) | 1 month | R | WCCA |
/ | Magini, R., et al. [115] | 2008 | Italy | 82 houses | 2 years | 1 s | R | WDPR |
/ | Umapathi, S., et al. [116] | 2013 | Australia | 20 houses | 12 months (between April 2010–November 2011) | 1 m | R | WDPR |
/ | Cole, G., and Stewart, R.A. [64] | 2013 | Australia | 2884 houses | 1 year (1 July 2008–30 June 2009) | 1 day | R | WEUD |
/ | Tanverakul, S.A., and Lee, J. [65] | 2013 | United States | 1000 houses | 3 years (October 2008–December 2011) | 1 month | R | WCCA |
/ | Cardell-Oliver, R. [80] | 2013 | Australia | 11,000 houses | 35,000 days | 1 h | R | WCCA |
SmartH2O project | Rizzoli et al. [77] | 2014 | Switzerland and Spain | / | / | 1 h | O [117] | WCCA |
/ | Joo, J.C., et al. [74] | 2015 | Korea | 80 houses | 1 year (January–December 2011) | 30 m | R | WCCA |
/ | Loureiro, D., et al. [75] | 2015 | Portugal | 311 houses | 4 months (January–April 2009) | 1 day | R | WCCA |
/ | Shan, Y., et al. [118] | 2015 | Greece and Poland | 77 houses from Greece; 41 from Poland | 2 months (November–December 2014) | / | R | WCCA |
/ | Liu, A., et al. [78] | 2016 | Australia | 68 houses | November 2012; January 2012 | 1 day | R | WEUD |
/ | Makwiza, C., and Jacobs, H.E. [119] | 2016 | Africa | 6 houses | January 2009; December 2014 | 1 Month | R | WDF |
/ | Lee, J. [76] | 2016 | United States | 1000 houses | 10 years (2002–2011) | 1 month | R | WDPR |
/ | March, H., et al. [120] | 2017 | Spain | 98,228 houses | 5 years (2011–2016) | 15 m | R | WCCA |
/ | Leyli-Abadi, M., et al. [104] | 2017 | France | 1000 houses | 3 months (1 January–31 March 2014) | 1 h | R | WDF |
/ | Cominola, A., et al. [22] | 2018 | United States | 1107 houses | 191 days (28 June–8 December 2015) | 1 h | R | WCCA/WDPR |
iWIDGET dataset | Kossieris, P. et al. [121] | 2018 | Greece | 11 houses | 1 to 2 year (2014–2016) | 15 min | R | WDPR |
/ | Duerr, I., et al. [66] | 2018 | Florida | 973 houses | 137 months | 1 month | R | WDF |
/ | Xenochristou, M., et al. [44] | 2018 | United Kingdom | 2000 houses | 3 years (October 2014–September 2017) | 15 min and 30 min | R | WDF |
/ | Chen, Y.J., et al. [122] | 2019 | Nepal | 1500 houses | 1 year (2014–2015) | 30 m | R | WEUD |
/ | Randall, T., and Koech, R. [123] | 2019 | Australia | 158 houses | 6 months (1 August 2015–31 January 2016) | 1 h | R | WCCA |
/ | Rees, P., et al. [49] | 2020 | United Kingdom | 19,238 houses | 9 years (2006–2015) | 1 day | O [124] | WDF |
/ | Pesantez, J.E., et al. [70] | 2020 | Unites States | 100 houses | 12 months since January 2017 | 1 h | R | WDF |
Dataset Name | Authors | Year | Location | Dataset Size | Time Series Lenght | Time Sampling Resolution | Access Policy | Goal and Applications |
---|---|---|---|---|---|---|---|---|
/ | Butler, D. [125] | 1993 | United Kingdom | 300 homes | 7 days (13 December–20 December 1987) | / | NA | WEUD |
/ | Edwards, K., and Martin, L. [126] | 1995 | United Kingdom | 100 houses | 1 year (October 1993–September 1994) | 15 m | NA | WEUD |
/ | DeOreo, W.B. et al. [127] | 1996 | United Kingdom | 16 houses | 3 weeks (between June–September 1994) | 10 s | NA | WEUD |
REUWS | Mayer P.W., et al. [55] | 1999 | United States | 1188 houses | 1 month (2 weeks in summer and winter) | 10 s | R | WEUD |
SHWCS | Mayer, P.W., et al. [128] | 2000 | United States | 37 houses | 2 weeks | 10 s | R | WCCA |
EBMUD | Mayer, P.W., et al. [129] | 2003 | United States | 33 houses | 2 weeks | 10 s | R | WCCA |
/ | Mayer P, et al. [130] | 2004 | United States | 26 houses | 2 weeks | / | R | WCCA |
REUMS | Roberts, P. [131] | 2005 | Australia | 100 houses | 2 weeks in February 2004; 2 weeks in August 2004 | 5 s | R | WCCA |
Weep | Heinrich, M. [86] | 2007 | New Zeland | 12 houses | 8 months | 10 s | R | WEUD |
/ | Kim, S.H., et al. [132] | 2007 | Korea | 145 houses | 3 year (December 2002–February 2006) | 1 h | R | WEUD |
Gold Coast | Willis, R., et al. [84] | 2009 | Australia | 151 houses | 14 days (Winter 2007–2008) | 10 s | R | WEUD |
/ | Froehlich, J.E.,et al. [133] | 2009 | United States | 10 houses | / | / | R | WEUD |
AWUS | Heinrich, M., and Roberti, H. [134] | 2010 | New Zeland | 51 houses | 4 weeks (between February–March); 5 weeks (between Jun–Jul) | 10 s | R | WEUD |
SEQ First read | Beal, C.D., et al. [135] | 2011 | Australia | 1500 houses | First read 2 weeks (14 June–28 June 2010) | 5 s | R | WEUD |
SEQ End-use dataset | Beal, C., et al. [85] | 2011 | Australia | 252 houses | First read 2 weeks (14 June–28 June 2010); Second read 2 weeks (1 December 2010-21 February 2011); Third read (1 June–June 15) | 5 s | O [136] | WEUD |
/ | Gato-Trinidad, S., et al. [88] | 2011 | Australia | 13 houses | 3 weeks in February 2004 and in August 2004 | 5 s | R | WCCA |
/ | Otaki, Y., et al. [137] | 2011 | Thailand | 63 houses in Chiang Mai and 59 in Khon Kaen | 1 month | / | R | WEUD |
/ | Srinivasan, V., et al. [67] | 2011 | United States | 2 houses | 7 days | 7 s | R | WEUD |
/ | Suero, F.J., et al. [87] | 2012 | United States | 96 houses | 3 year (2000–2003) | 10 s | R | WEUD |
MCW | MidCoast Water. [138] | 2012 | Australia | 141 houses | 2 to 5 weeks between December/January and June/August | 1 m | R | WCCA |
/ | Lee, D.J., et al. [139] | 2012 | Korea | 146 households | 4 years (2002–2006) | 10 min | R | WEUD |
/ | Borg, M., et al. [140] | 2013 | United States | 3 houses | 1 week | / | R | WCCA |
/ | Neunteufel, R., et al. [141] | 2014 | Austria | 4 houses | 2 year (2010–2012) | 10 s | R | WEUD |
/ | Gurung, T.R.,et al. [142] | 2015 | Australia | 130 households | 7 different periods of 2 weeks between 2010–2013 | 5 s | R | WEUD |
/ | Rathnayaka, K., et al. [143] | 2015 | Australia | 337 houses | 2 weeks in Winter 2010 and Summer 2012 | 5 s | R | WEUD |
/ | Nguyen, K.A., et al. [144] | 2015 | Australia | 500 homes | 3 years (2010–2012) | 5 s | R | WEUD |
/ | Makonin, S., et al. [145] | 2016 | Canada | 1 house | 2 years (2012–2014) | 1 m | O [146] | WEUD |
REU II 2016 | William B DeOreo, et al. [147] | 2016 | United States | 762 houses | 3 years (2010–2013) | 10 s | R | WEUD |
/ | Kozlovskiy, I., et al. [68] | 2016 | United States | 1 house | 21 days (17 April–8 May 2016) | 1 s | R | WEUD |
2 Data sets: HWU study and MHOW study | Liu, A., et al. [90] | 2017 | Australia | HWU study: 68 households; MHOW study: 120 households | HWU study: May–September 2013 MHOW study: January–December 2014 | 1 m | R | WCCA |
/ | Carranza J.C.I., et al. [148] | 2017 | Spain | 300 houses | 9 years since 2008 | / | R | WEUD |
/ | Vitter, J.S., and Webber, M. [69] | 2018 | United States | 1 house | 3 week | 7 s | O [149] | WEUD |
/ | Kofinas, D.T. et al. [150] | 2018 | Greece | 16 house | 13 months since February 2015 | 30 s | O [151] | WEUD |
/ | Clifford, E., et al. [152] | 2018 | Ireland | Dataset 1: 745 houses Dataset 2: 1200 houses | / | Dataset 1: 1s Datset 2: 15 m | R | WEUD |
/ | Nguyen, K.A., et al. [79] | 2018 | Australia | 1000 houses | Winter 2010 (14–28 June). Summer 2010-2011 (1 December 2010–21 February 2011). Winter 2011( 1–15 June) | 5 s | R | WEUD |
/ | Omaghomi, T., et al. [153] | 2020 | United States | 1038 houses | 14 days | 10 s | R | WEUD |
/ | Meyer, B.E., et al. [81] | 2020 | Africa | 63 houses | 247 days | 15 s | R | WEUD |
/ | Pacheco, C.J.B., [154] | 2020 | Unites States | 5 houses | 1 month | 4 s | R | WEUD |
/ | Di Mauro, A., et al. [155] | 2020 | Italy | 1 house | 8 months (March–October 2019) | 1 s | O (website under construction) | WEUD |
/ | Meyer, B.E., et al. [81] | 2020 | Africa | 63 houses | 247 days | 15 s | R | WEUD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Mauro, A.; Cominola, A.; Castelletti, A.; Di Nardo, A. Urban Water Consumption at Multiple Spatial and Temporal Scales. A Review of Existing Datasets. Water 2021, 13, 36. https://doi.org/10.3390/w13010036
Di Mauro A, Cominola A, Castelletti A, Di Nardo A. Urban Water Consumption at Multiple Spatial and Temporal Scales. A Review of Existing Datasets. Water. 2021; 13(1):36. https://doi.org/10.3390/w13010036
Chicago/Turabian StyleDi Mauro, Anna, Andrea Cominola, Andrea Castelletti, and Armando Di Nardo. 2021. "Urban Water Consumption at Multiple Spatial and Temporal Scales. A Review of Existing Datasets" Water 13, no. 1: 36. https://doi.org/10.3390/w13010036
APA StyleDi Mauro, A., Cominola, A., Castelletti, A., & Di Nardo, A. (2021). Urban Water Consumption at Multiple Spatial and Temporal Scales. A Review of Existing Datasets. Water, 13(1), 36. https://doi.org/10.3390/w13010036