Dates are inconsistent

Dates are inconsistent

1123 results sorted by ID

2024/1834 (PDF) Last updated: 2024-11-08
Scutum: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction
Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, Yu Feng
Implementation

Scalability remains a key challenge for blockchain adoption. Rollups—especially zero-knowledge (ZK) and optimistic rollups—address this by processing transactions off-chain while maintaining Ethereum’s security, thus reducing gas fees and improving speeds. Cross-rollup bridges like Orbiter Finance enable seamless asset transfers across various Layer 2 (L2) rollups and between L2 and Layer 1 (L1) chains. However, the increasing reliance on these bridges raises significant security concerns,...

2024/1830 (PDF) Last updated: 2024-11-07
A Tight Analysis of GHOST Consistency
Peter Gaži, Zahra Motaqy, Alexander Russell
Cryptographic protocols

The GHOST protocol has been proposed as an improvement to the Nakamoto consensus mechanism that underlies Bitcoin. In contrast to the Nakamoto fork-choice rule, the GHOST rule justifies selection of a chain with weights computed over subtrees rather than individual paths. This mechanism has been adopted by a variety of consensus protocols, and is a part of the currently deployed protocol supporting Ethereum. We establish an exact characterization of the security region of the GHOST...

2024/1823 (PDF) Last updated: 2024-11-07
A Composability Treatment of Bitcoin's Transaction Ledger with Variable Difficulty
Juan Garay, Yun Lu, Julien Prat, Brady Testa, Vassilis Zikas
Cryptographic protocols

As the first proof-of-work (PoW) permissionless blockchain, Bitcoin aims at maintaining a decentralized yet consistent transaction ledger as protocol participants (“miners”) join and leave as they please. This is achieved by means of a subtle PoW difficulty adjustment mechanism that adapts to the perceived block generation rate, and important steps have been taken in previous work to provide a rigorous analysis of the conditions (such as bounds on dynamic participation) that are sufficient...

2024/1809 (PDF) Last updated: 2024-11-05
Foundations of Adaptor Signatures
Paul Gerhart, Dominique Schröder, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Applications

Adaptor signatures extend the functionality of regular signatures through the computation of pre-signatures on messages for statements of NP relations. Pre-signatures are publicly verifiable; they simultaneously hide and commit to a signature of an underlying signature scheme on that message. Anybody possessing a corresponding witness for the statement can adapt the pre-signature to obtain the "regular" signature. Adaptor signatures have found numerous applications for conditional payments...

2024/1797 (PDF) Last updated: 2024-11-03
FLock: Robust and Privacy-Preserving Federated Learning based on Practical Blockchain State Channels
Ruonan Chen, Ye Dong, Yizhong Liu, Tingyu Fan, Dawei Li, Zhenyu Guan, Jianwei Liu, Jianying Zhou
Applications

\textit{Federated Learning} (FL) is a distributed machine learning paradigm that allows multiple clients to train models collaboratively without sharing local data. Numerous works have explored security and privacy protection in FL, as well as its integration with blockchain technology. However, existing FL works still face critical issues. \romannumeral1) It is difficult to achieving \textit{poisoning robustness} and \textit{data privacy} while ensuring high \textit{model accuracy}....

2024/1794 (PDF) Last updated: 2024-11-02
How Much Public Randomness Do Modern Consensus Protocols Need?
Joseph Bonneau, Benedikt Bünz, Miranda Christ, Yuval Efron
Cryptographic protocols

Modern blockchain-based consensus protocols aim for efficiency (i.e., low communication and round complexity) while maintaining security against adaptive adversaries. These goals are usually achieved using a public randomness beacon to select roles for each participant. We examine to what extent this randomness is necessary. Specifically, we provide tight bounds on the amount of entropy a Byzantine Agreement protocol must consume from a beacon in order to enjoy efficiency and adaptive...

2024/1775 (PDF) Last updated: 2024-10-31
zkMarket : Privacy-preserving Digital Data Trade System via Blockchain
Seungwoo Kim, Semin Han, Seongho Park, Kyeongtae Lee, Jihye Kim, Hyunok Oh
Applications

In this paper, we introduce zkMarket, a privacy-preserving fair trade system on the blockchain. zkMarket addresses the challenges of transaction privacy and computational efficiency. To ensure transaction privacy, zkMarket is built upon an anonymous transfer protocol. By combining encryption with zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK), both the seller and the buyer are enabled to trade fairly. Furthermore, by encrypting the decryption key, we make the data...

2024/1773 (PDF) Last updated: 2024-10-31
Universal Adaptor Signatures from Blackbox Multi-Party Computation
Michele Ciampi, Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
Public-key cryptography

Adaptor signatures (AS) extend the functionality of traditional digital signatures by enabling the generation of a pre-signature tied to an instance of a hard NP relation, which can later be turned (adapted) into a full signature upon revealing a corresponding witness. The recent work by Liu et al. [ASIACRYPT 2024] devised a generic AS scheme that can be used for any NP relation---which here we will refer to as universal adaptor signatures scheme, in short UAS---from any one-way function....

2024/1768 (PDF) Last updated: 2024-10-31
Push-Button Verification for BitVM Implementations
Hanzhi Liu, Jingyu Ke, Hongbo Wen, Robin Linus, Lukas George, Manish Bista, Hakan Karakuş, Domo, Junrui Liu, Yanju Chen, Yu Feng
Implementation

Bitcoin, while being the most prominent blockchain with the largest market capitalization, suffers from scalability and throughput limitations that impede the development of ecosystem projects like Bitcoin Decentralized Finance (BTCFi). Recent advancements in BitVM propose a promising Layer 2 (L2) solution to enhance Bitcoin's scalability by enabling complex computations off-chain with on-chain verification. However, Bitcoin's constrained programming environment—characterized by its...

2024/1704 (PDF) Last updated: 2024-10-18
From One-Time to Two-Round Reusable Multi-Signatures without Nested Forking
Lior Rotem, Gil Segev, Eylon Yogev
Foundations

Multi-signature schemes are gaining significant interest due to their blockchain applications. Of particular interest are two-round schemes in the plain public-key model that offer key aggregation, and whose security is based on the hardness of the DLOG problem. Unfortunately, despite substantial recent progress, the security proofs of the proposed schemes provide rather insufficient concrete guarantees (especially for 256-bit groups). This frustrating situation has so far been approached...

2024/1680 (PDF) Last updated: 2024-10-16
Sunfish: Reading Ledgers with Sparse Nodes
Giulia Scaffino, Karl Wüst, Deepak Maram, Alberto Sonnino, Lefteris Kokoris-Kogias
Cryptographic protocols

The increased throughput offered by modern blockchains, such as Sui, Aptos, and Solana, enables processing thousands of transactions per second, but it also introduces higher costs for decentralized application (dApp) developers who need to track and verify changes in the state of their application. This is true because dApp developers run full nodes, which download and re-execute every transaction to track the global state of the chain. However, this becomes prohibitively expensive for...

2024/1667 (PDF) Last updated: 2024-10-18
Overlapped Bootstrapping for FHEW/TFHE and Its Application to SHA3
Deokhwa Hong, Youngjin Choi, Yongwoo Lee, Young-Sik Kim
Implementation

Homomorphic Encryption (HE) enables operations on encrypted data without requiring decryption, thus allowing for secure handling of confidential data within smart contracts. Among the known HE schemes, FHEW and TFHE are particularly notable for use in smart contracts due to their lightweight nature and support for arbitrary logical gates. In contrast, other HE schemes often require several gigabytes of keys and are limited to supporting only addition and multiplication. As a result, there...

2024/1664 (PDF) Last updated: 2024-10-14
Consensus on SNARK pre-processed circuit polynomials
Jehyuk Jang
Applications

This paper addresses verifiable consensus of pre-processed circuit polynomials for succinct non-interactive argument of knowledge (SNARK). More specifically, we focus on parts of circuits, referred to as wire maps, which may change based on program inputs or statements being argued. Preparing commitments to wire maps in advance is essential for certain SNARK protocols to maintain their succinctness, but it can be costly. SNARK verifiers can alternatively consider receiving wire maps from an...

2024/1646 (PDF) Last updated: 2024-10-12
Transaction Execution Mechanisms
Abdoulaye Ndiaye

This paper studies transaction execution mechanisms (TEMs) for blockchains, as the efficient resource allocation across multiple parallel executions queues or "local fee markets." We present a model considering capacity constraints, user valuations, and delay costs in a multi-queue system with an aggregate capacity constraint due to global consensus. We show that revenue maximization tends to allocate capacity to the highest-paying queue, while welfare maximization generally serves all...

2024/1643 (PDF) Last updated: 2024-10-12
Optimizing Liveness for Blockchain-Based Sealed-Bid Auctions in Rational Settings
Maozhou Huang, Xiangyu Su, Mario Larangeira, Keisuke Tanaka
Cryptographic protocols

Blockchain-based auction markets offer stronger fairness and transparency compared to their centralized counterparts. Deposits and sealed bid formats are usually applied to enhance security and privacy. However, to our best knowledge, the formal treatment of deposit-enabled sealed-bid auctions remains lacking in the cryptographic literature. To address this gap, we first propose a decentralized anonymous deposited-bidding (DADB) scheme, providing formal syntax and security definitions....

2024/1610 (PDF) Last updated: 2024-10-09
Secret Sharing with Snitching
Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, Marcin Mielniczuk
Foundations

We address the problem of detecting and punishing shareholder collusion in secret-sharing schemes. We do it in the recently proposed cryptographic model called individual cryptography (Dziembowski, Faust, and Lizurej, Crypto 2023), which assumes that there exist tasks that can be efficiently computed by a single machine but distributing this computation across multiple (mutually distrustful devices) is infeasible. Within this model, we introduce a novel primitive called secret sharing...

2024/1575 (PDF) Last updated: 2024-10-24
Efficiently-Thresholdizable Batched Identity Based Encryption, with Applications
Amit Agarwal, Rex Fernando, Benny Pinkas
Cryptographic protocols

We propose a new cryptographic primitive called "batched identity-based encryption" (Batched IBE) and its thresholdized version. The new primitive allows encrypting messages with specific identities and batch labels, where the latter can represent, for example, a block number on a blockchain. Given an arbitrary subset of identities for a particular batch, our primitive enables efficient issuance of a single decryption key that can be used to decrypt all ciphertexts having identities that are...

2024/1573 (PDF) Last updated: 2024-10-05
OML: Open, Monetizable, and Loyal AI
Zerui Cheng, Edoardo Contente, Ben Finch, Oleg Golev, Jonathan Hayase, Andrew Miller, Niusha Moshrefi, Anshul Nasery, Sandeep Nailwal, Sewoong Oh, Himanshu Tyagi, Pramod Viswanath
Applications

Artificial Intelligence (AI) has steadily improved across a wide range of tasks, and a significant breakthrough towards general intelligence was achieved with the rise of generative deep models, which have garnered worldwide attention. However, the development and deployment of AI are almost entirely controlled by a few powerful organizations and individuals who are racing to create Artificial General Intelligence (AGI). These centralized entities make decisions with little public oversight,...

2024/1544 (PDF) Last updated: 2024-10-02
PoUDR: Proof of Unified Data Retrieval in Decentralized Storage Networks
Zonglun Li, Shuhao Zheng, Junliang Luo, Ziyue Xin, Dun Yuan, Shang Gao, Sichao Yang, Bin Xiao, Xue Liu
Applications

Decentralized storage networks, including IPFS and Filecoin, have created a marketplace where individuals exchange storage space for profit. These networks employ protocols that reliably ensure data storage providers accurately store data without alterations, safeguarding the interests of storage purchasers. However, these protocols lack an effective and equitable payment mechanism for data retrieval, particularly when multiple data queriers are involved. This necessitates a protocol that...

2024/1538 (PDF) Last updated: 2024-10-02
Security Perceptions of Users in Stablecoins: Advantages and Risks within the Cryptocurrency Ecosystem
Maggie Yongqi Guan, Yaman Yu, Tanusree Sharma, Molly Zhuangtong Huang, Kaihua Qin, Yang Wang, Kanye Ye Wang
Applications

Stablecoins, a type of cryptocurrency pegged to another asset to maintain a stable price, have become an important part of the cryptocurrency ecosystem. Prior studies have primarily focused on examining the security of stablecoins from technical and theoretical perspectives, with limited investigation into users’ risk perceptions and security behaviors in stablecoin practices. To address this research gap, we conducted a mixed-method study that included constructing a stablecoin interaction...

2024/1526 (PDF) Last updated: 2024-09-28
Overpass Channels: Horizontally Scalable, Privacy-Enhanced, with Independent Verification, Fluid Liquidity, and Robust Censorship Proof, Payments
Brandon "Cryptskii" Ramsay
Cryptographic protocols

Overpass Channels presents a groundbreaking approach to blockchain scalability, offering a horizontally scalable, privacy-enhanced payment network with independent verification, fluid liquidity, and robust censorship resistance. This paper introduces a novel architecture that leverages zero-knowledge proofs, specifically zk-SNARKs, to ensure transaction validity and privacy while enabling unprecedented throughput and efficiency. By eliminating the need for traditional consensus mechanisms...

2024/1523 (PDF) Last updated: 2024-09-27
Functional Adaptor Signatures: Beyond All-or-Nothing Blockchain-based Payments
Nikhil Vanjani, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols

In scenarios where a seller holds sensitive data $x$, like employee / patient records or ecological data, and a buyer seeks to obtain an evaluation of specific function $f$ on this data, solutions in trustless digital environments like blockchain-based Web3 systems typically fall into two categories: (1) Smart contract-powered solutions and (2) cryptographic solutions leveraging tools such as adaptor signatures. The former approach offers atomic transactions where the buyer learns the...

2024/1501 (PDF) Last updated: 2024-09-25
Exploring User Perceptions of Security Auditing in the Web3 Ecosystem
Molly Zhuangtong Huang, Rui Jiang, Tanusree Sharma, Kanye Ye Wang
Applications

In the rapidly evolving Web3 ecosystem, transparent auditing has emerged as a critical component for both applications and users. However, there is a significant gap in understanding how users perceive this new form of auditing and its implications for Web3 security. Utilizing a mixed-methods approach that incorporates a case study, user interviews, and social media data analysis, our study leverages a risk perception model to comprehensively explore Web3 users' perceptions regarding...

2024/1498 (PDF) Last updated: 2024-09-24
Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script
Federico Barbacovi, Enrique Larraia, Paul Germouty, Wei Zhang
Implementation

Groth16 is a pairing-based zero-knowledge proof scheme that has a constant proof size and an efficient verification algorithm. Bitcoin Script is a stack-based low-level programming language that is used to lock and unlock bitcoins. In this paper, we present a practical implementation of the Groth16 verifier in Bitcoin Script deployable on the mainnet of a Bitcoin blockchain called BSV. Our result paves the way for a framework of verifiable computation on Bitcoin: a Groth16 proof is generated...

2024/1496 (PDF) Last updated: 2024-09-24
No Fish Is Too Big for Flash Boys! Frontrunning on DAG-based Blockchains
Jianting Zhang, Aniket Kate
Attacks and cryptanalysis

Frontrunning is rampant in blockchain ecosystems, yielding attackers profits that have already soared into several million. Most existing frontrunning attacks focus on manipulating transaction order (namely, prioritizing attackers' transactions before victims' transactions) $\textit{within}$ a block. However, for the emerging directed acyclic graph (DAG)-based blockchains, these intra-block frontrunning attacks may not fully reveal the frontrunning vulnerabilities as they introduce block...

2024/1489 (PDF) Last updated: 2024-09-23
Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC
Nishanth Chandran, Juan Garay, Ankit Kumar Misra, Rafail Ostrovsky, Vassilis Zikas
Cryptographic protocols

The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties...

2024/1467 (PDF) Last updated: 2024-09-19
P2C2T: Preserving the Privacy of Cross-Chain Transfer
Panpan Han, Zheng Yan, Laurence T. Yang, Elisa Bertino
Cryptographic protocols

Blockchain-enabled digital currency systems have typically operated in isolation, lacking necessary mechanisms for seamless interconnection. Consequently, transferring assets across distinct currency systems remains a complex challenge, with existing schemes often falling short in ensuring security, privacy, and practicality. This paper proposes P2C2T -- a privacy-preserving cross-chain transfer scheme. It is the first scheme to address atomicity, unlinkability, indistinguishability,...

2024/1452 (PDF) Last updated: 2024-09-17
On the Complexity of Cryptographic Groups and Generic Group Models
Cong Zhang, Keyu Ji, Taiyu Wang, Bingsheng Zhang, Hong-Sheng Zhou, Xin Wang, Kui Ren
Foundations

Ever since the seminal work of Diffie and Hellman, cryptographic (cyclic) groups have served as a fundamental building block for constructing cryptographic schemes and protocols. The security of these constructions can often be based on the hardness of (cyclic) group-based computational assumptions. Then, the generic group model (GGM) has been studied as an idealized model (Shoup, EuroCrypt 1997), which justifies the hardness of many (cyclic) group-based assumptions and shows the limits of...

2024/1451 (PDF) Last updated: 2024-09-17
Traffic-aware Merkle Trees for Shortening Blockchain Transaction Proofs
Avi Mizrahi, Noam Koren, Ori Rottenstreich, Yuval Cassuto
Applications

Merkle trees play a crucial role in blockchain networks in organizing network state. They allow proving a particular value of an entry in the state to a node that maintains only the root of the Merkle trees, a hash-based signature computed over the data in a hierarchical manner. Verification of particular state entries is crucial in reaching a consensus on the execution of a block where state information is required in the processing of its transactions. For instance, a payment transaction...

2024/1419 (PDF) Last updated: 2024-09-11
On the Relationship between Public Key Primitives via Indifferentiability
Shuang Hu, Bingsheng Zhang, Cong Zhang, Kui Ren
Foundations

Recently, Masny and Rindal [MR19] formalized a notion called Endemic Oblivious Transfer (EOT), and they proposed a generic transformation from Non-Interactive Key Exchange (NIKE) to EOT with standalone security in the random oracle (RO) model. However, from the model level, the relationship between idealized NIKE and idealized EOT and the relationship between idealized elementary public key primitives have been rarely researched. In this work, we investigate the relationship between ideal...

2024/1415 (PDF) Last updated: 2024-09-10
Privacy Comparison for Bitcoin Light Client Implementations
Arad Kotzer, Ori Rottenstreich
Applications

Light clients implement a simple solution for Bitcoin's scalability problem, as they do not store the entire blockchain but only the state of particular addresses of interest. To be able to keep track of the updated state of their addresses, light clients rely on full nodes to provide them with the required information. To do so, they must reveal information about the addresses they are interested in. This paper studies the two most common light client implementations, SPV and Neutrino with...

2024/1406 (PDF) Last updated: 2024-09-11
Blind Multisignatures for Anonymous Tokens with Decentralized Issuance
Ioanna Karantaidou, Omar Renawi, Foteini Baldimtsi, Nikolaos Kamarinakis, Jonathan Katz, Julian Loss
Cryptographic protocols

We propose the first constructions of anonymous tokens with decentralized issuance. Namely, we consider a dynamic set of signers/issuers; a user can obtain a token from any subset of the signers, which is publicly verifiable and unlinkable to the issuance process. To realize this new primitive we formalize the notion of Blind Multi-Signatures (BMS), which allow a user to interact with multiple signers to obtain a (compact) signature; even if all the signers collude they are unable to link a...

2024/1405 (PDF) Last updated: 2024-09-09
Lego-DLC: batching module for commit-carrying SNARK under Pedersen Engines
Byeongjun Jang, Gweonho Jeong, Hyuktae Kwon, Hyunok Oh, Jihye Kim
Cryptographic protocols

The synergy of commitments and zk-SNARKs is widely used in various applications, particularly in fields like blockchain, to ensure data privacy and integrity without revealing secret information. However, proving multiple commitments in a batch imposes a large overhead on a zk-SNARK system. One solution to alleviate the burden is the use of commit-and-prove SNARK (CP-SNARK) approach. LegoSNARK defines a new notion called commit-carrying SNARK (cc-SNARK), a special- ized form of...

2024/1402 (PDF) Last updated: 2024-09-07
A Recursive zk-based State Update System
Daniel Bloom, Sai Deng
Implementation

This paper introduces a ZKP (zero-knowledge proof) based state update system, where each block contains a SNARK proof aggregated from the user generated zkVM (zero knowledge virtual machine) proofs. It enables users to generate state update proofs in their local machines, contributing to a secure, decentralized verification process. Our main contribution in this paper, the recursive proofs system, addresses scalability by recursively verifying user proofs and aggregating them in a...

2024/1393 (PDF) Last updated: 2024-09-05
Survivable Payment Channel Networks
Yekaterina Podiatchev, Ariel Orda, Ori Rottenstreich
Applications

Payment channel networks (PCNs) are a leading method to scale the transaction throughput in cryptocurrencies. Two participants can use a bidirectional payment channel for making multiple mutual payments without committing them to the blockchain. Opening a payment channel is a slow operation that involves an on-chain transaction locking a certain amount of funds. These aspects limit the number of channels that can be opened or maintained. Users may route payments through a multi-hop path and...

2024/1364 (PDF) Last updated: 2024-08-29
FLIP-and-prove R1CS
Anca Nitulescu, Nikitas Paslis, Carla Ràfols
Cryptographic protocols

In this work, we consider the setting where one or more users with low computational resources would lie to outsource the task of proof generation for SNARKs to one external entity, named Prover. We study the scenario in which Provers have access to all statements and witnesses to be proven beforehand. We take a different approach to proof aggregation and design a new protocol that reduces simultaneously proving time and communication complexity, without going through recursive proof...

2024/1357 (PDF) Last updated: 2024-08-29
Understanding the Blockchain Interoperability Graph based on Cryptocurrency Price Correlation
Ori Mazor, Ori Rottenstreich
Applications

Cryptocurrencies have gained high popularity in recent years, with over 9000 of them, including major ones such as Bitcoin and Ether. Each cryptocurrency is implemented on one blockchain or over several such networks. Recently, various technologies known as blockchain interoperability have been developed to connect these different blockchains and create an interconnected blockchain ecosystem. This paper aims to provide insights on the blockchain ecosystem and the connection...

2024/1338 (PDF) Last updated: 2024-08-30
Horcrux: Synthesize, Split, Shift and Stay Alive Preventing Channel Depletion via Universal and Enhanced Multi-hop Payments
Anqi Tian, Peifang Ni, Yingzi Gao, Jing Xu
Cryptographic protocols

Payment Channel Networks (PCNs) have been highlighted as viable solutions to address the scalability issues in current permissionless blockchains. They facilitate off-chain transactions, significantly reducing the load on the blockchain. However, the extensive reuse of multi-hop routes in the same direction poses a risk of channel depletion, resulting in involved channels becoming unidirectional or even closing, thereby compromising the sustainability and scalability of PCNs. Even more...

2024/1311 (PDF) Last updated: 2024-08-28
Dynamic Threshold Key Encapsulation with a Transparent Setup
Joon Sik Kim, Kwangsu Lee, Jong Hwan Park, Hyoseung Kim
Public-key cryptography

A threshold key encapsulation mechanism (TKEM) facilitates the secure distribution of session keys among multiple participants, allowing key recovery through a threshold number of shares. TKEM has gained significant attention, especially for decentralized systems, including blockchains. However, existing constructions often rely on trusted setups, which pose security risks such as a single point of failure, and are limited by fixed participant numbers and thresholds. To overcome this, we...

2024/1299 (PDF) Last updated: 2024-08-20
Permissionless Verifiable Information Dispersal (Data Availability for Bitcoin Rollups)
Ben Fisch, Arthur Lazzaretti, Zeyu Liu, Lei Yang
Cryptographic protocols

Rollups are special applications on distributed state machines (aka blockchains) for which the underlying state machine only logs, but does not execute transactions. Rollups have become a popular way to scale applications on Ethereum and there is now growing interest in running rollups on Bitcoin. Rollups scale throughput and reduce transaction costs by using auxiliary machines that have higher throughput and lower cost of executing transactions than the underlying blockchain. State updates...

2024/1296 (PDF) Last updated: 2024-08-19
Universal Composable Transaction Serialization with Order Fairness
Michele Ciampi, Aggelos Kiayias, Yu Shen
Cryptographic protocols

Order fairness in the context of distributed ledgers has received recently significant attention due to a range of attacks that exploit the reordering and adaptive injection of transactions (violating what is known as “input causality”). To address such concerns an array of definitions for order fairness has been put forth together with impossibility and feasibility results highlighting the difficulty and multifaceted nature of fairness in transaction serialization. Motivated by this we...

2024/1262 (PDF) Last updated: 2024-08-09
Dilithium-Based Verifiable Timed Signature Scheme
Erkan Uslu, Oğuz Yayla
Cryptographic protocols

Verifiable Timed Signatures (VTS) are cryptographic constructs that enable obtaining a signature at a specific time in the future and provide evidence that the signature is legitimate. This framework particularly finds utility in applications such as payment channel networks, multiparty signing operations, or multiparty computation, especially within blockchain architectures. Currently, VTS schemes are based on signature algorithms such as BLS signature, Schnorr signature, and ECDSA. These...

2024/1259 (PDF) Last updated: 2024-09-27
Efficient (Non-)Membership Tree from Multicollision-Resistance with Applications to Zero-Knowledge Proofs
Maksym Petkus
Cryptographic protocols

Many applications rely on accumulators and authenticated dictionaries, from timestamping certificate transparency and memory checking to blockchains and privacy-preserving decentralized electronic money, while Merkle tree and its variants are efficient for arbitrary element membership proofs, non-membership proofs, i.e., universal accumulators, and key-based membership proofs may require trees up to 256 levels for 128 bits of security, assuming binary tree, which makes it inefficient in...

2024/1189 (PDF) Last updated: 2024-08-14
The Espresso Sequencing Network: HotShot Consensus, Tiramisu Data-Availability, and Builder-Exchange
Jeb Bearer, Benedikt Bünz, Philippe Camacho, Binyi Chen, Ellie Davidson, Ben Fisch, Brendon Fish, Gus Gutoski, Fernando Krell, Chengyu Lin, Dahlia Malkhi, Kartik Nayak, Keyao Shen, Alex Xiong, Nathan Yospe, Sishan Long
Cryptographic protocols

Building a Consensus platform for shared sequencing can power an ecosystem of layer-2 solutions such as rollups which are crucial for scaling blockchains (e.g.,Ethereum). However, it drastically differs from conventional Consensus for blockchains in two key considerations: • (No) Execution: A shared sequencing platform is not responsible for pre-validating blocks nor for processing state updates. Therefore, agreement is formed on a sequence of certificates of block data-availability (DA)...

2024/1178 (PDF) Last updated: 2024-07-21
Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems
Dominik Marchsreiter
Applications

Blockchain technology ensures accountability, transparency, and redundancy in critical applications, includ- ing IoT with embedded systems. However, the reliance on public-key cryptography (PKC) makes blockchain vulnerable to quantum computing threats. This paper addresses the urgent need for quantum-safe blockchain solutions by integrating Post- Quantum Cryptography (PQC) into blockchain frameworks. Utilizing algorithms from the NIST PQC standardization pro- cess, we aim to fortify...

2024/1176 (PDF) Last updated: 2024-10-21
A zero-trust swarm security architecture and protocols
Alex Shafarenko
Cryptographic protocols

This report presents the security protocols and general trust architecture of the SMARTEDGE swarm computing platform. Part 1 describes the coordination protocols for use in a swarm production environment, e.g. a smart factory, and Part 2 deals with crowd-sensing scenarios characteristic of traffic-control swarms.

2024/1175 (PDF) Last updated: 2024-07-20
AVeCQ: Anonymous Verifiable Crowdsourcing with Worker Qualities
Vlasis Koutsos, Sankarshan Damle, Dimitrios Papadopoulos, Sujit Gujar, Dimitris Chatzopoulos
Applications

In crowdsourcing systems, requesters publish tasks, and interested workers provide answers to get rewards. Worker anonymity motivates participation since it protects their privacy. Anonymity with unlinkability is an enhanced version of anonymity because it makes it impossible to ``link'' workers across the tasks they participate in. Another core feature of crowdsourcing systems is worker quality which expresses a worker's trustworthiness and quantifies their historical performance. In this...

2024/1167 (PDF) Last updated: 2024-09-10
Expanding the Toolbox: Coercion and Vote-Selling at Vote-Casting Revisited
Tamara Finogina, Javier Herranz, Peter B. Roenne
Applications

Coercion is a challenging and multi-faceted threat that prevents people from expressing their will freely. Similarly, vote-buying does to undermine the foundation of free democratic elections. These threats are especially dire for remote electronic voting, which relies on voters to express their political will freely but happens in an uncontrolled environment outside the polling station and the protection of the ballot booth. However, electronic voting in general, both in-booth and remote,...

2024/1154 (PDF) Last updated: 2024-07-16
Blockchain Space Tokenization
Aggelos Kiayias, Elias Koutsoupias, Philip Lazos, Giorgos Panagiotakos
Cryptographic protocols

Handling congestion in blockchain systems is a fundamental problem given that the security and decentralization objectives of such systems lead to designs that compromise on (horizontal) scalability (what sometimes is referred to as the ``blockchain trilemma''). Motivated by this, we focus on the question whether it is possible to design a transaction inclusion policy for block producers that facilitates fee and delay predictability while being incentive compatible at the same time....

2024/1144 (PDF) Last updated: 2024-07-14
A Note on ``Secure and Distributed IoT Data Storage in Clouds Based on Secret Sharing and Collaborative Blockchain''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show that the data storage scheme [IEEE/ACM Trans. Netw., 2023, 31(4), 1550-1565] is flawed due to the false secret sharing protocol, which requires that some random $4\times 4$ matrixes over the finite field $F_p$ (a prime $p$) are invertible. But we find its mathematical proof for invertibility is incorrect. To fix this flaw, one needs to check the invertibility of all 35 matrixes so as to generate the proper 7 secret shares.

2024/1135 (PDF) Last updated: 2024-07-12
Scalable and Lightweight State-Channel Audits
Christian Badertscher, Maxim Jourenko, Dimitris Karakostas, Mario Larangeira
Cryptographic protocols

Payment channels are one of the most prominent off-chain scaling solutions for blockchain systems. However, regulatory institutions have difficulty embracing them, as the channels lack insights needed for Anti-Money Laundering (AML) auditing purposes. Our work tackles the problem of a formal reliable and controllable inspection of off-ledger payment channels, by offering a novel approach for maintaining and reliably auditing statistics of payment channels. We extend a typical trustless Layer...

2024/1132 (PDF) Last updated: 2024-07-23
A New PPML Paradigm for Quantized Models
Tianpei Lu, Bingsheng Zhang, Xiaoyuan Zhang, Kui Ren
Cryptographic protocols

Model quantization has become a common practice in machine learning (ML) to improve efficiency and reduce computational/communicational overhead. However, adopting quantization in privacy-preserving machine learning (PPML) remains challenging due to the complex internal structure of quantized operators, which leads to inefficient protocols under the existing PPML frameworks. In this work, we propose a new PPML paradigm that is tailor-made for and can benefit from quantized models. Our...

2024/1130 (PDF) Last updated: 2024-07-11
Distributed Verifiable Random Function With Compact Proof
Ahmet Ramazan Ağırtaş, Arda Buğra Özer, Zülfükar Saygı, Oğuz Yayla
Cryptographic protocols

Verifiable Random Functions (VRFs) are cryptographic primitives that generate unpredictable randomness along with proofs that are verifiable, a critical requirement for blockchain applications in decentralized finance, online gaming, and more. Existing VRF constructions often rely on centralized entities, creating security vulnerabilities. Distributed VRFs (DVRFs) offer a decentralized alternative but face challenges like large proof sizes or dependence on computationally expensive bilinear...

2024/1118 (PDF) Last updated: 2024-07-19
Shared-Custodial Password-Authenticated Deterministic Wallets
Poulami Das, Andreas Erwig, Sebastian Faust
Cryptographic protocols

Cryptographic wallets are an essential tool in Blockchain networks to ensure the secure storage and maintenance of an user's cryptographic keys. Broadly, wallets can be divided into three categories, namely custodial, non-custodial, and shared-custodial wallets. The first two are centralized solutions, i.e., the wallet is operated by a single entity, which inherently introduces a single point of failure. Shared-custodial wallets, on the other hand, are maintained by two independent parties,...

2024/1115 (PDF) Last updated: 2024-07-09
Public vs Private Blockchains lineage storage
Bilel Zaghdoudi, Maria Potop Butucaru
Applications

This paper reports the experimental results related to lineage event storage via smart contracts deployed on private and public blockchain. In our experiments we measure the following three metrics: the cost to deploy the storage smart contract on the blockchain, which measures the initial expenditure, typically in gas units, required to deploy the smart contract that facilitates lineage event storage, then the time and gas costs needed to store a lineage event. We investigated both single...

2024/1108 (PDF) Last updated: 2024-07-08
Faster Asynchronous Blockchain Consensus and MVBA
Matthieu Rambaud
Applications

Blockchain consensus, a.k.a. BFT SMR, are protocols enabling $n$ processes to decide on an ever-growing chain. The fastest known asynchronous one is called 2-chain VABA (PODC'21 and FC'22), and is used as fallback chain in Abraxas* (CCS'23). It has a claimed $9.5\delta$ expected latency when used for a single shot instance, a.k.a. an MVBA. We exhibit attacks breaking it. Hence, the title of the fastest asynchronous MVBA with quadratic messages complexity goes to sMVBA (CCS'22), with...

2024/1084 (PDF) Last updated: 2024-07-03
Enabling Complete Atomicity for Cross-chain Applications Through Layered State Commitments
Yuandi Cai, Ru Cheng, Yifan Zhou, Shijie Zhang, Jiang Xiao, Hai Jin
Applications

Cross-chain Decentralized Applications (dApps) are increasingly popular for their ability to handle complex tasks across various blockchains, extending beyond simple asset transfers or swaps. However, ensuring all dependent transactions execute correctly together, known as complete atomicity, remains a challenge. Existing works provide financial atomicity, protecting against monetary loss, but lack the ability to ensure correctness for complex tasks. In this paper, we introduce Avalon, a...

2024/1061 (PDF) Last updated: 2024-06-29
Insta-Pok3r: Real-time Poker on Blockchain
Sanjam Garg, Aniket Kate, Pratyay Mukherjee, Rohit Sinha, Sriram Sridhar
Cryptographic protocols

We develop a distributed service for generating correlated randomness (e.g. permutations) for multiple parties, where each party’s output is private but publicly verifiable. This service provides users with a low-cost way to play online poker in real-time, without a trusted party. Our service is backed by a committee of compute providers, who run a multi-party computation (MPC) protocol to produce an (identity-based) encrypted permutation of a deck of cards, in an offline phase well ahead...

2024/1051 (PDF) Last updated: 2024-09-13
Adaptor Signatures: New Security Definition and A Generic Construction for NP Relations
Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
Public-key cryptography

An adaptor signatures (AS) scheme is an extension of digital signatures that allows the signer to generate a pre-signature for an instance of a hard relation. This pre-signature can later be adapted to a full signature with a corresponding witness. Meanwhile, the signer can extract a witness from both the pre-signature and the signature. AS have recently garnered more attention due to its scalability and interoperability. Dai et al. [INDOCRYPT 2022] proved that AS can be constructed for any...

2024/1050 (PDF) Last updated: 2024-06-28
On Sequential Functions and Fine-Grained Cryptography
Jiaxin Guan, Hart Montgomery
Foundations

A sequential function is, informally speaking, a function $f$ for which a massively parallel adversary cannot compute "substantially" faster than an honest user with limited parallel computation power. Sequential functions form the backbone of many primitives that are extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles. Despite this widespread practical use, there has been little work studying the complexity or theory of sequential...

2024/1022 (PDF) Last updated: 2024-08-02
Competitive Policies for Online Collateral Maintenance
Ghada Almashaqbeh, Sixia Chen, Alexander Russell
Foundations

Layer-two blockchain protocols emerged to address scalability issues related to fees, storage cost, and confirmation delay of on-chain transactions. They aggregate off-chain transactions into a fewer on-chain ones, thus offering immediate settlement and reduced transaction fees. To preserve security of the underlying ledger, layer-two protocols often work in a collateralized model; resources are committed on-chain to backup off-chain activities. A fundamental challenge that arises in this...

2024/1021 (PDF) Last updated: 2024-09-28
ammBoost: State Growth Control for AMMs
Nicholas Michel, Mohamed E. Najd, Ghada Almashaqbeh
Cryptographic protocols

Automated market makers (AMMs) are a form of decentralized cryptocurrency exchanges that have attracted huge interest lately. They are considered a prime example of Decentralized Finance (DeFi) applications, a large category under Web 3.0. Their popularity and high trading activity have resulted in millions of on-chain transactions leading to serious scalability issues in terms of throughput and on-chain state size. Existing scalability solutions, when employed in the context of AMMs, are...

2024/1020 (PDF) Last updated: 2024-06-24
chainBoost: A Secure Performance Booster for Blockchain-based Resource Markets
Zahra Motaqy, Mohamed E. Najd, Ghada Almashaqbeh
Cryptographic protocols

Cryptocurrencies and blockchain technology provide an innovative model for reshaping digital services. Driven by the movement toward Web 3.0, recent systems started to provide distributed services, such as computation outsourcing or file storage, on top of the currency exchange medium. By allowing anyone to join and collect cryptocurrency payments for serving others, these systems create decentralized markets for trading digital resources. Yet, there is still a big gap between the promise of...

2024/982 (PDF) Last updated: 2024-06-18
SoK: Programmable Privacy in Distributed Systems
Daniel Benarroch, Bryan Gillespie, Ying Tong Lai, Andrew Miller
Applications

This Systematization of Knowledge conducts a survey of contemporary distributed blockchain protocols, with the aim of identifying cryptographic and design techniques which practically enable both expressive programmability and user data confidentiality. To facilitate a framing which supports the comparison of concretely very different protocols, we define an epoch-based computational model in the form of a flexible UC-style ideal functionality which divides the operation of...

2024/968 (PDF) Last updated: 2024-06-20
Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility
Jia Liu, Mark Manulis
Cryptographic protocols

Distributed randomness beacons (DRBs) are fundamental for various decentralised applications, such as consensus protocols, decentralised gaming and lotteries, and collective governance protocols. These applications are heavily used on modern blockchain platforms. This paper presents the so far most efficient direct construction and implementation of a non-interactive distributed verifiable random function (NI-DVRF) that is fully compatible with Ethereum. Our NI-DVRF scheme adopts...

2024/961 (PDF) Last updated: 2024-06-14
Efficient Execution Auditing for Blockchains under Byzantine Assumptions
Jeff Burdges, Alfonso Cevallos, Handan Kılınç Alper, Chen-Da Liu-Zhang, Fatemeh Shirazi, Alistair Stewart, Rob Habermeier, Robert Klotzner, Andronik Ordian
Cryptographic protocols

Security of blockchain technologies primarily relies on decentralization making them resilient against a subset of entities being taken down or corrupt. Blockchain scaling, crucial to decentralisation, has been addressed by architectural changes: i.e., the load of the nodes is reduced by parallelisation, called sharding or by taking computation load off the main blockchain via rollups. Both sharding and rollups have limitations in terms of decentralization and security. A crucial component...

2024/957 (PDF) Last updated: 2024-06-18
VRaaS: Verifiable Randomness as a Service on Blockchains
Jacob Gorman, Lucjan Hanzlik, Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Pratik Sarkar, Sri AravindaKrishnan Thyagarajan
Foundations

Web3 applications, such as on-chain games, NFT minting, and leader elections necessitate access to unbiased, unpredictable, and publicly verifiable randomness. Despite its broad use cases and huge demand, there is a notable absence of comprehensive treatments of on-chain verifiable randomness services. To bridge this, we offer an extensive formal analysis of on-chain verifiable randomness services. We present the $first$ formalization of on-chain verifiable randomness in the...

2024/953 (PDF) Last updated: 2024-06-14
MixBuy: Contingent Payment in the Presence of Coin Mixers
Diego Castejon-Molina, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez
Applications

A contingent payment protocol involves two mutually distrustful parties, a buyer and a seller, operating on the same blockchain, and a digital product, whose ownership is not tracked on a blockchain (e.g. a digital book, but not a NFT). The buyer holds coins on the blockchain and transfers them to the seller in exchange for the product. However, if the blockchain does not hide transaction details, any observer can learn that a buyer purchased some product from a seller. In this work, we...

2024/941 (PDF) Last updated: 2024-09-12
SmartZKCP: Towards Practical Data Exchange Marketplace Against Active Attacks
Xuanming Liu, Jiawen Zhang, Yinghao Wang, Xinpeng Yang, Xiaohu Yang
Applications

The trading of data is becoming increasingly important as it holds substantial value. A blockchain-based data marketplace can provide a secure and transparent platform for data exchange. To facilitate this, developing a fair data exchange protocol for digital goods has garnered considerable attention in recent decades. The Zero Knowledge Contingent Payment (ZKCP) protocol enables trustless fair exchanges with the aid of blockchain and zero-knowledge proofs. However, applying this protocol in...

2024/896 (PDF) Last updated: 2024-06-05
Dynamic-FROST: Schnorr Threshold Signatures with a Flexible Committee
Annalisa Cimatti, Francesco De Sclavis, Giuseppe Galano, Sara Giammusso, Michela Iezzi, Antonio Muci, Matteo Nardelli, Marco Pedicini
Cryptographic protocols

Threshold signatures enable any subgroup of predefined cardinality $t$ out of a committee of $n$ participants to generate a valid, aggregated signature. Although several $(t,n)$-threshold signature schemes exist, most of them assume that the threshold $t$ and the set of participants do not change over time. Practical applications of threshold signatures might benefit from the possibility of updating the threshold or the committee of participants. Examples of such applications are...

2024/889 (PDF) Last updated: 2024-08-12
Analyzing and Benchmarking ZK-Rollups
Stefanos Chaliasos, Itamar Reif, Adrià Torralba-Agell, Jens Ernstberger, Assimakis Kattis, Benjamin Livshits
Implementation

As blockchain technology continues to transform the realm of digital transactions, scalability has emerged as a critical issue. This challenge has spurred the creation of innovative solutions, particularly Layer 2 scalability techniques like rollups. Among these, ZK-Rollups are notable for employing Zero-Knowledge Proofs to facilitate prompt on-chain transaction verification, thereby improving scalability and efficiency without sacrificing security. Nevertheless, the intrinsic complexity of...

2024/888 (PDF) Last updated: 2024-06-04
zkCross: A Novel Architecture for Cross-Chain Privacy-Preserving Auditing
Yihao Guo, Minghui Xu, Xiuzhen Cheng, Dongxiao Yu, Wangjie Qiu, Gang Qu, Weibing Wang, Mingming Song
Cryptographic protocols

One of the key areas of focus in blockchain research is how to realize privacy-preserving auditing without sacrificing the system’s security and trustworthiness. However, simultaneously achieving auditing and privacy protection, two seemingly contradictory objectives, is challenging because an auditing system would require transparency and accountability which might create privacy and security vulnerabilities. This becomes worse in cross-chain scenarios, where the information silos from...

2024/876 (PDF) Last updated: 2024-09-22
Distributing Keys and Random Secrets with Constant Complexity
Benny Applebaum, Benny Pinkas
Cryptographic protocols

In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...

2024/873 (PDF) Last updated: 2024-06-01
Cryptanalysis of Algebraic Verifiable Delay Functions
Alex Biryukov, Ben Fisch, Gottfried Herold, Dmitry Khovratovich, Gaëtan Leurent, María Naya-Plasencia, Benjamin Wesolowski
Attacks and cryptanalysis

Verifiable Delay Functions (VDF) are a class of cryptographic primitives aiming to guarantee a minimum computation time, even for an adversary with massive parallel computational power. They are useful in blockchain protocols, and several practical candidates have been proposed based on exponentiation in a large finite field: Sloth++, Veedo, MinRoot. The underlying assumption of these constructions is that computing an exponentiation $x^e$ requires at least $\log_2 e$ sequential...

2024/846 (PDF) Last updated: 2024-05-29
Distributed Asynchronous Remote Key Generation
Mark Manulis, Hugo Nartz
Cryptographic protocols

Asynchronous Remote Key Generation (ARKG) is a primitive introduced by Frymann et al. at ACM CCS 2020. It enables a sender to generate a new public key $pk'$ for a receiver ensuring only it can, at a later time, compute the corresponding private key sk'. These key pairs are indistinguishable from freshly generated ones and can be used in various public-key cryptosystems such as digital signatures and public-key encryption. ARKG has been explored for applications in WebAuthn credential backup...

2024/826 (PDF) Last updated: 2024-06-19
Securing Lightning Channels against Rational Miners
Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Subhra Mazumdar
Cryptographic protocols

Payment channel networks (e.g., the Lightning Network in Bitcoin) constitute one of the most popular scalability solutions for blockchains. Their safety relies on parties being online to detect fraud attempts on-chain and being able to timely react by publishing certain transactions on-chain. However, a cheating party may bribe miners in order to censor those transactions, resulting in loss of funds for the cheated party: these attacks are known in the literature as timelock bribing attacks....

2024/813 (PDF) Last updated: 2024-05-28
How to Redact the Bitcoin Backbone Protocol
Mehmet Sabir Kiraz, Enrique Larraia, Owen Vaughan
Cryptographic protocols

We explain how to extend the Bitcoin backbone model of Garay et al. (Eurocrypt, 2015) to accommodate for redactable blockchains. Our extension captures fluid blockchain-based databases (with mutability requirements) and compliance with existing legislation, such as the GDPR right to be forgotten, or the need to erase offending data from nodes’ databases that would otherwise provoke legal shutdowns. Our redactable backbone protocol retains the essential properties of blockchains. Leveraging...

2024/784 (PDF) Last updated: 2024-05-22
Universal Blockchain Assets
Owen Vaughan
Applications

We present a novel protocol for issuing and transferring tokens across blockchains without the need of a trusted third party or cross-chain bridge. In our scheme, the blockchain is used for double-spend protection only, while the authorisation of token transfers is performed off-chain. Due to the universality of our approach, it works in almost all blockchain settings. It can be implemented immediately on UTXO blockchains such as Bitcoin without modification, and on account-based blockchains...

2024/768 (PDF) Last updated: 2024-05-20
The Ouroboros of ZK: Why Verifying the Verifier Unlocks Longer-Term ZK Innovation
Denis Firsov, Benjamin Livshits
Implementation

Verifying the verifier in the context of zero-knowledge proof is an essential part of ensuring the long-term integrity of the zero-knowledge ecosystem. This is vital for both zero-knowledge rollups and also other industrial applications of ZK. In addition to further minimizing the required trust and reducing the trusted computing base (TCB), having a verified verifier opens the door to decentralized proof generation by potentially untrusted parties. We outline a research program and justify...

2024/734 (PDF) Last updated: 2024-05-13
Proof of Stake and Activity: Rewarding On-Chain Activity Through Consensus
Aram Jivanyan, Karen Terjanian
Cryptographic protocols

We are introducing a novel consensus protocol for blockchain, called Proof of Stake and Activity (PoSA) which can augment the traditional Proof of Stake methods by integrating a unique Proof of Activity system. PoSA offers a compelling economic model that promotes decentralization by rewarding validators based on their staked capital and also the business value they contribute to the chain. This protocol has been implemented already into a fully-fledged blockchain platform called...

2024/726 (PDF) Last updated: 2024-05-12
Challenger: Blockchain-based Massively Multiplayer Online Game Architecture
Boris Chan Yip Hon, Bilel Zaghdoudi, Maria Potop-Butucaru, Sébastien Tixeuil, Serge Fdida
Applications

We propose Challenger a peer-to-peer blockchain-based middleware architecture for narrative games, and discuss its resilience to cheating attacks. Our architecture orchestrates nine services in a fully decentralized manner where nodes are not aware of the entire composition of the system nor its size. All these components are orchestrated together to obtain (strong) resilience to cheaters. The main contribution of the paper is to provide, for the first time, an architecture for narrative...

2024/704 (PDF) Last updated: 2024-05-07
Fully Automated Selfish Mining Analysis in Efficient Proof Systems Blockchains
Krishnendu Chatterjee, Amirali Ebrahim-Zadeh, Mehrdad Karrabi, Krzysztof Pietrzak, Michelle Yeo, Djordje Zikelic
Applications

We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems -- like proofs of stake or proofs of space -- and consider the problem of computing an optimal selfish mining attack which maximizes expected relative revenue of the adversary, thus minimizing the chain quality. To this end, we propose a novel selfish mining attack that aims to maximize this objective and formally model the attack as a Markov...

2024/692 (PDF) Last updated: 2024-05-06
Blink: An Optimal Proof of Proof-of-Work
Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Giulia Scaffino, Dionysis Zindros
Cryptographic protocols

Designing light clients for Proof-of-Work blockchains has been a foundational problem since Nakamoto's SPV construction in the Bitcoin paper. Over the years, communication was reduced from O(C) down to O(polylog(C)) in the system's lifetime C. We present Blink, the first provably secure O(1) light client that does not require a trusted setup.

2024/684 (PDF) Last updated: 2024-05-04
A Plug-and-Play Long-Range Defense System for Proof-of-Stake Blockchains
Lucien K. L. Ng, Panagiotis Chatzigiannis, Duc V. Le, Mohsen Minaei, Ranjit Kumaresan, Mahdi Zamani
Cryptographic protocols

In recent years, many blockchain systems have progressively transitioned to proof-of-stake (PoS) con- sensus algorithms. These algorithms are not only more energy efficient than proof-of-work but are also well-studied and widely accepted within the community. However, PoS systems are susceptible to a particularly powerful "long-range" attack, where an adversary can corrupt the validator set retroactively and present forked versions of the blockchain. These versions would still be acceptable...

2024/668 (PDF) Last updated: 2024-05-01
Blockchain Price vs. Quantity Controls
Abdoulaye Ndiaye
Applications

This paper studies the optimal transaction fee mechanisms for blockchains, focusing on the distinction between price-based ($\mathcal{P}$) and quantity-based ($\mathcal{Q}$) controls. By analyzing factors such as demand uncertainty, validator costs, cryptocurrency price fluctuations, price elasticity of demand, and levels of decentralization, we establish criteria that determine the selection of transaction fee mechanisms. We present a model framed around a Nash bargaining game, exploring...

2024/664 (PDF) Last updated: 2024-06-11
Pando: Extremely Scalable BFT Based on Committee Sampling
Xin Wang, Haochen Wang, Haibin Zhang, Sisi Duan
Cryptographic protocols

Byzantine fault-tolerant (BFT) protocols are known to suffer from the scalability issue. Indeed, their performance degrades drastically as the number of replicas $n$ grows. While a long line of work has attempted to achieve the scalability goal, these works can only scale to roughly a hundred replicas. In this paper, we develop BFT protocols from the so-called committee sampling approach that selects a small committee for consensus and conveys the results to all replicas. Such an...

2024/660 (PDF) Last updated: 2024-04-29
FE[r]Chain: Enforcing Fairness in Blockchain Data Exchanges Through Verifiable Functional Encryption
Camille Nuoskala, Reyhaneh Rabbaninejad, Tassos Dimitriou, Antonis Michalas
Cryptographic protocols

Functional Encryption (FE) allows users to extract specific function-related information from encrypted data while preserving the privacy of the underlying plaintext. Though significant research has been devoted to developing secure and efficient Multi-Input Functional Encryption schemes supporting diverse functions, there remains a noticeable research gap in the development of verifiable FE schemes. Functionality and performance have received considerable attention, however, the crucial...

2024/657 (PDF) Last updated: 2024-05-02
Cryptographic Accumulators: New Definitions, Enhanced Security, and Delegatable Proofs
Anaïs Barthoulot, Olivier Blazy, Sébastien Canard
Public-key cryptography

Cryptographic accumulators, introduced in 1993 by Benaloh and De Mare, represent a set with a concise value and offer proofs of (non-)membership. Accumulators have evolved, becoming essential in anonymous credentials, e-cash, and blockchain applications. Various properties like dynamic and universal emerged for specific needs, leading to multiple accumulator definitions. In 2015, Derler, Hanser, and Slamanig proposed a unified model, but new properties, including zero-knowledge security,...

2024/653 (PDF) Last updated: 2024-09-20
Aether: Approaching the Holy Grail in Asynchronous BFT
Xiaohai Dai, Chaozheng Ding, Hai Jin, Julian Loss, Ling Ren
Applications

State-of-the-art asynchronous Byzantine Fault Tolerance (BFT) protocols integrate a partially-synchronous optimistic path. The holy grail in this paradigm is to match the performance of a partially-synchronous protocol in favorable situations and match the performance of a purely asynchronous protocol in unfavorable situations. Several prior works have made progress toward this goal by matching the efficiency of a partially-synchronous protocol in favorable conditions. However, their...

2024/641 (PDF) Last updated: 2024-10-17
Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon
Xuanji Meng, Xiao Sui, Zhaoxin Yang, Kang Rong, Wenbo Xu, Shenglong Chen, Ying Yan, Sisi Duan
Cryptographic protocols

We present Rondo, a scalable and reconfiguration-friendly distributed randomness beacon (DRB) protocol in the partially synchronous model. Rondo is the first DRB protocol that is built from batched asynchronous verifiable secret sharing (bAVSS) and meanwhile avoids the high $O(n^3)$ message cost, where $n$ is the number of nodes. Our key contribution lies in the introduction of a new variant of bAVSS called batched asynchronous verifiable secret sharing with partial output (bAVSS-PO)....

2024/628 (PDF) Last updated: 2024-07-08
MUSEN: Aggregatable Key-Evolving Verifiable Random Functions and Applications
Bernardo David, Rafael Dowsley, Anders Konring, Mario Larangeira
Cryptographic protocols

A Verifiable Random Function (VRF) can be evaluated on an input by a prover who holds a secret key, generating a pseudorandom output and a proof of output validity that can be verified using the corresponding public key. VRFs are a central building block of committee election mechanisms that sample parties to execute tasks in cryptographic protocols, e.g. generating blocks in a Proof-of-Stake (PoS) blockchain or executing a round of MPC protocols. We propose the notion, and a matching...

2024/622 (PDF) Last updated: 2024-04-22
Deep Selfish Proposing in Longest-Chain Proof-of-Stake Protocols
Roozbeh Sarenche, Svetla Nikova, Bart Preneel
Attacks and cryptanalysis

It has been shown that the selfish mining attack enables a miner to achieve an unfair relative revenue, posing a threat to the progress of longest-chain blockchains. Although selfish mining is a well-studied attack in the context of Proof-of-Work blockchains, its impact on the longest-chain Proof-of-Stake (LC-PoS) protocols needs yet to be addressed. This paper involves both theoretical and implementation-based approaches to analyze the selfish proposing attack in the LC-PoS protocols. We...

2024/618 (PDF) Last updated: 2024-04-22
Efficient KZG-based Univariate Sum-check and Lookup Argument
Yuncong Zhang, Shi-Feng Sun, Dawu Gu
Cryptographic protocols

We propose a novel KZG-based sum-check scheme, dubbed $\mathsf{Losum}$, with optimal efficiency. Particularly, its proving cost is one multi-scalar-multiplication of size $k$---the number of non-zero entries in the vector, its verification cost is one pairing plus one group scalar multiplication, and the proof consists of only one group element. Using $\mathsf{Losum}$ as a component, we then construct a new lookup argument, named $\mathsf{Locq}$, which enjoys a smaller proof size and a...

2024/617 (PDF) Last updated: 2024-08-20
Lattice-Based Succinct Mercurial Functional Commitment for Boolean Circuits: Definitions and Constructions
Hongxiao Wang, Siu-Ming Yiu, Yanmin Zhao, Zoe L. Jiang, Min Xie
Foundations

Vector commitments (VC) have gained significant attention due to their extensive use in applications such as blockchain and accumulators. Mercurial vector commitments (MVC) and mercurial functional commitments (MFC), as variants of VC, are central techniques for constructing more advanced cryptographic primitives, such as zero-knowledge sets and zero-knowledge functional elementary databases (ZK-FEDB). However, existing MFCs $\textit{only support linear functions}$, which limits their...

2024/612 (PDF) Last updated: 2024-04-21
FHERMA: Building the Open-Source FHE Components Library for Practical Use
Gurgen Arakelov, Nikita Kaskov, Daria Pianykh, Yuriy Polyakov
Applications

Fully Homomorphic Encryption (FHE) is a powerful Privacy-Enhancing Technology (PET) that enables computations on encrypted data without having access to the secret key. While FHE holds immense potential for enhancing data privacy and security, creating its practical applications is associated with many difficulties. A significant barrier is the absence of easy-to-use, standardized components that developers can utilize as foundational building blocks. Addressing this gap requires...

2024/597 (PDF) Last updated: 2024-09-11
Blockchain-based decentralized identity system: Design and security analysis
Gewu BU, Serge Fdida, Maria Potop-Butucaru, Bilel Zaghdoudi
Applications

This paper presents a novel blockchain-based decentralized identity system (DID), tailored for enhanced digital identity management in Internet of Things (IoT) and device-to-device (D2D) networks. The proposed system features a hierarchical structure that effectively merges a distributed ledger with a mobile D2D network, ensuring robust security while streamlining communication. Central to this design are the gateway nodes, which serve as intermediaries, facilitating DID registration and...

2024/561 (PDF) Last updated: 2024-04-23
SQIAsignHD: SQIsignHD Adaptor Signature
Farzin Renan, Péter Kutas
Public-key cryptography

Adaptor signatures can be viewed as a generalized form of the standard digital signature schemes where a secret randomness is hidden within a signature. Adaptor signatures are a recent cryptographic primitive and are becoming an important tool for blockchain applications such as cryptocurrencies to reduce on-chain costs, improve fungibility, and contribute to off-chain forms of payment in payment-channel networks, payment-channel hubs, and atomic swaps. However, currently used adaptor...

2024/552 (PDF) Last updated: 2024-04-09
Insights from building a blockchain-based metaverse
Mario Yaksetig
Applications

This paper presents an in-depth exploration of the development and deployment of a Layer 1 (L1) blockchain designed to underpin metaverse experiences. As the digital and physical realms become increasingly intertwined, the metaverse emerges as a frontier for innovation, demanding robust, scalable, and secure infrastructure. The core of our investigation centers around the challenges and insights gained from constructing a blockchain framework capable of supporting the vast, dynamic...

2024/534 (PDF) Last updated: 2024-04-05
CryptoVampire: Automated Reasoning for the Complete Symbolic Attacker Cryptographic Model
Simon Jeanteur, Laura Kovács, Matteo Maffei, Michael Rawson
Cryptographic protocols

Cryptographic protocols are hard to design and prove correct, as witnessed by the ever-growing list of attacks even on protocol standards. Symbolic models of cryptography enable automated formal security proofs of such protocols against an idealized cryptographic model, which abstracts away from the algebraic properties of cryptographic schemes and thus misses attacks. Computational models of cryptography yield rigorous guarantees but support at present only interactive proofs and/or...

2024/514 (PDF) Last updated: 2024-04-28
Zero-Knowledge Proof Vulnerability Analysis and Security Auditing
Xueyan Tang, Lingzhi Shi, Xun Wang, Kyle Charbonnet, Shixiang Tang, Shixiao Sun
Cryptographic protocols

Zero-Knowledge Proof (ZKP) technology marks a revolutionary advancement in the field of cryptography, enabling the verification of certain information ownership without revealing any specific details. This technology, with its paradoxical yet powerful characteristics, provides a solid foundation for a wide range of applications, especially in enhancing the privacy and security of blockchain technology and other cryptographic systems. As ZKP technology increasingly becomes a part of the...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.