Dates are inconsistent

Dates are inconsistent

729 results sorted by ID

2024/1916 (PDF) Last updated: 2024-11-25
Fast, Compact and Hardware-Friendly Bootstrapping in less than 3ms Using Multiple Instruction Multiple Ciphertext
Seunghwan Lee, Dohyuk Kim, Dong-Joon Shin
Public-key cryptography

This paper proposes a fast, compact key-size, and hardware-friendly bootstrapping using only 16-bit integer arithmetic and fully homomorphic encryption FHE16, which enables gate operations on ciphertexts using only 16-bit integer arithmetic. The proposed bootstrapping consists of unit operations on ciphertexts, such as (incomplete) number theoretic transform (NTT), inverse NTT, polynomial multiplication, gadget decomposition, and automorphism, under a composite modulus constructed from...

2024/1879 (PDF) Last updated: 2024-11-18
Practical Zero-Knowledge PIOP for Public Key and Ciphertext Generation in (Multi-Group) Homomorphic Encryption
Intak Hwang, Hyeonbum Lee, Jinyeong Seo, Yongsoo Song
Cryptographic protocols

Homomorphic encryption (HE) is a foundational technology in privacy-enhancing cryptography, enabling non-interactive computation over encrypted data. Recently, generalized HE primitives designed for multi-party applications, such as multi-group HE (MGHE), have gained significant research interest. While constructing secure multi-party protocols from (MG)HE in the semi-honest model is straightforward, zero-knowledge techniques are essential for ensuring security against malicious...

2024/1853 (PDF) Last updated: 2024-11-12
Giant Does NOT Mean Strong: Cryptanalysis of BQTRU
Ali Raya, Vikas Kumar, Aditi Kar Gangopadhyay, Sugata Gangopadhyay
Attacks and cryptanalysis

NTRU-like constructions are among the most studied lattice-based schemes. The freedom of design of NTRU resulted in many variants in literature motivated by faster computations or more resistance against lattice attacks by changing the underlying algebra. To the best of our knowledge, BQTRU (DCC 2017), a noncommutative NTRU-like cryptosystem, is the fastest claimed variant of NTRU built over the quaternion algebra of the bivariate ring of polynomials. The key generation and the encryption of...

2024/1846 (PDF) Last updated: 2024-11-10
The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy
Vadim Lyubashevsky, Gregor Seiler, Patrick Steuer
Implementation

The hardness of lattice problems offers one of the most promising security foundations for quantum-safe cryptography. Basic schemes for public key encryption and digital signatures are already close to standardization at NIST and several other standardization bodies, and the research frontier has moved on to building primitives with more advanced privacy features. At the core of many such primi- tives are zero-knowledge proofs. In recent years, zero-knowledge proofs for (and using)...

2024/1817 (PDF) Last updated: 2024-11-12
Improved ML-DSA Hardware Implementation With First Order Masking Countermeasure
Kamal Raj, Prasanna Ravi, Tee Kiah Chia, Anupam Chattopadhyay
Implementation

We present the protected hardware implementation of the Module-Lattice-Based Digital Signature Standard (ML-DSA). ML-DSA is an extension of Dilithium 3.1, which is the winner of the Post Quantum Cryptography (PQC) competition in the digital signature category. The proposed design is based on the existing high-performance Dilithium 3.1 design. We implemented existing Dilithium masking gadgets in hardware, which were only implemented in software. The masking gadgets are integrated with the...

2024/1805 (PDF) Last updated: 2024-11-04
Smoothing Parameter and Shortest Vector Problem on Random Lattices
Amaury Pouly, Yixin Shen
Public-key cryptography

Lattice problems have many applications in various domains of computer science. There is currently a gap in the understanding of these problems with respect to their worst-case complexity and their average-case behaviour. For instance, the Shortest Vector problem (SVP) on an n-dimensional lattice has worst-case complexity $2^{n+o(n)}$ \cite{ADRS15}. However, in practice, people rely on heuristic (unproven) sieving algorithms of time complexity $2^{0.292n+o(n)}$ \cite{BeckerDGL16} to...

2024/1791 (PDF) Last updated: 2024-11-02
Discrete gaussian sampling for BKZ-reduced basis
Amaury Pouly, Yixin Shen
Public-key cryptography

Discrete Gaussian sampling on lattices is a fundamental problem in lattice-based cryptography. In this paper, we revisit the Markov chain Monte Carlo (MCMC)-based Metropolis-Hastings-Klein (MHK) algorithm proposed by Wang and Ling and study its complexity under the Geometric Series Assuption (GSA) when the given basis is BKZ-reduced. We give experimental evidence that the GSA is accurate in this context, and we give a very simple approximate formula for the complexity of the sampler that is...

2024/1780 (PDF) Last updated: 2024-11-01
ABE for Circuits with $\mathsf{poly}(\lambda)$-sized Keys from LWE
Valerio Cini, Hoeteck Wee
Public-key cryptography

We present a key-policy attribute-based encryption (ABE) scheme for circuits based on the Learning With Errors (LWE) assumption whose key size is independent of the circuit depth. Our result constitutes the first improvement for ABE for circuits from LWE in almost a decade, given by Gorbunov, Vaikuntanathan, and Wee (STOC 2013) and Boneh, et al. (EUROCRYPT 2014) -- we reduce the key size in the latter from $\mathsf{poly}(\mbox{depth},\lambda)$ to $\mathsf{poly}(\lambda)$. The starting point...

2024/1777 (PDF) Last updated: 2024-11-16
Masking Gaussian Elimination at Arbitrary Order, with Application to Multivariate- and Code-Based PQC
Quinten Norga, Suparna Kundu, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

Digital signature schemes based on multivariate- and code-based hard problems are promising alternatives for lattice-based signature schemes, due to their smaller signature size. Hence, several candidates in the ongoing additional standardization for quantum secure digital signature (DS) schemes by the National Institute of Standards and Technology (NIST) rely on such alternate hard problems. Gaussian Elimination (GE) is a critical component in the signing procedure of these schemes. In this...

2024/1769 (PDF) Last updated: 2024-11-15
A Closer Look at Falcon
Phillip Gajland, Jonas Janneck, Eike Kiltz
Public-key cryptography

Falcon is a winner of NIST's six-year post-quantum cryptography standardisation competition. Based on the celebrated full-domain-hash framework of Gentry, Peikert and Vaikuntanathan (GPV) (STOC'08), Falcon leverages NTRU lattices to achieve the most compact signatures among lattice-based schemes. Its security hinges on a Rényi divergence-based argument for Gaussian samplers, a core element of the scheme. However, the GPV proof, which uses statistical distance to argue closeness of...

2024/1765 (PDF) Last updated: 2024-10-31
Compact and Tightly Secure (Anonymous) IBE from Module LWE in the QROM
Toi Tomita, Junji Shikata
Public-key cryptography

We present a new compact and tightly secure (anonymous) identity-based encryption (IBE) scheme based on structured lattices. This is the first IBE scheme that is (asymptotically) as compact as the most practical NTRU-based schemes and tightly secure under the module learning with errors (MLWE) assumption, known as the standard lattice assumption, in the (quantum) random oracle model. In particular, our IBE scheme is the most compact lattice-based scheme (except for NTRU-based schemes). We...

2024/1757 (PDF) Last updated: 2024-11-05
On the Sample Complexity of Linear Code Equivalence for all Code Rates
Alessandro Budroni, Andrea Natale
Attacks and cryptanalysis

In parallel with the standardization of lattice-based cryptosystems, the research community in Post-quantum Cryptography focused on non-lattice-based hard problems for constructing public-key cryptographic primitives. The Linear Code Equivalence (LCE) Problem has gained attention regarding its practical applications and cryptanalysis. Recent advancements, including the LESS signature scheme and its candidacy in the NIST standardization for additional signatures, supported LCE as a...

2024/1714 (PDF) Last updated: 2024-10-25
Theoretical Approaches to Solving the Shortest Vector Problem in NP-Hard Lattice-Based Cryptography with Post-SUSY Theories of Quantum Gravity in Polynomial Time
Trevor Nestor
Attacks and cryptanalysis

The Shortest Vector Problem (SVP) is a cornerstone of lattice-based cryptography, underpinning the security of numerous cryptographic schemes like NTRU. Given its NP-hardness, efficient solutions to SVP have profound implications for both cryptography and computational complexity theory. This paper presents an innovative framework that integrates concepts from quantum gravity, noncommutative geometry, spectral theory, and post-SUSY particle physics to address SVP. By mapping high-dimensional...

2024/1709 (PDF) Last updated: 2024-11-19
Do Not Disturb a Sleeping Falcon: Floating-Point Error Sensitivity of the Falcon Sampler and Its Consequences
Xiuhan Lin, Mehdi Tibouchi, Yang Yu, Shiduo Zhang
Public-key cryptography

Falcon is one of the three postquantum signature schemes already selected by NIST for standardization. It is the most compact among them, and offers excellent efficiency and security. However, it is based on a complex algorithm for lattice discrete Gaussian sampling which presents a number of implementation challenges. In particular, it relies on (possibly emulated) floating-point arithmetic, which is often regarded as a cause for concern, and has been leveraged in, e.g., side-channel...

2024/1692 (PDF) Last updated: 2024-10-17
On the practicality of quantum sieving algorithms for the shortest vector problem
Joao F. Doriguello, George Giapitzakis, Alessandro Luongo, Aditya Morolia
Attacks and cryptanalysis

One of the main candidates of post-quantum cryptography is lattice-based cryptography. Its cryptographic security against quantum attackers is based on the worst-case hardness of lattice problems like the shortest vector problem (SVP), which asks to find the shortest non-zero vector in an integer lattice. Asymptotic quantum speedups for solving SVP are known and rely on Grover's search. However, to assess the security of lattice-based cryptography against these Grover-like quantum speedups,...

2024/1663 (PDF) Last updated: 2024-10-14
A Hidden-Bits Approach to Black-Box Statistical ZAPs from LWE
Eli Bradley, George Lu, Shafik Nassar, Brent Waters, David J. Wu
Foundations

We give a new approach for constructing statistical ZAP arguments (a two-message public-coin statistically witness indistinguishable argument) from quasi-polynomial hardness of the learning with errors (LWE) assumption with a polynomial modulus-to-noise ratio. Previously, all ZAP arguments from lattice-based assumptions relied on correlation-intractable hash functions. In this work, we present the first construction of a ZAP from LWE via the classic hidden-bits paradigm. Our construction...

2024/1649 (PDF) Last updated: 2024-10-13
Multiplying Polynomials without Powerful Multiplication Instructions (Long Paper)
Vincent Hwang, YoungBeom Kim, Seog Chung Seo
Implementation

We improve the performance of lattice-based cryptosystems Dilithium on Cortex-M3 with expensive multiplications. Our contribution is two-fold: (i) We generalize Barrett multiplication and show that the resulting shape-independent modular multiplication performs comparably to long multiplication on some platforms without special hardware when precomputation is free. We call a modular multiplication “shape-independent” if its correctness and efficiency depend only on the magnitude of moduli...

2024/1633 (PDF) Last updated: 2024-10-11
Efficient Boolean-to-Arithmetic Mask Conversion in Hardware
Aein Rezaei Shahmirzadi, Michael Hutter
Implementation

Masking schemes are key in thwarting side-channel attacks due to their robust theoretical foundation. Transitioning from Boolean to arithmetic (B2A) masking is a necessary step in various cryptography schemes, including hash functions, ARX-based ciphers, and lattice-based cryptography. While there exists a significant body of research focusing on B2A software implementations, studies pertaining to hardware implementations are quite limited, with the majority dedicated solely to creating...

2024/1591 (PDF) Last updated: 2024-10-13
MPC-in-the-Head Framework without Repetition and its Applications to the Lattice-based Cryptography
Weihao Bai, Long Chen, Qianwen Gao, Zhenfeng Zhang
Cryptographic protocols

The MPC-in-the-Head framework has been pro- posed as a solution for Non-Interactive Zero-Knowledge Arguments of Knowledge (NIZKAoK) due to its efficient proof generation. However, most existing NIZKAoK constructions using this approach require multiple MPC evaluations to achieve negligible soundness error, resulting in proof size and time that are asymptotically at least λ times the size of the circuit of the NP relation. In this paper, we propose a novel method to eliminate the need for...

2024/1535 (PDF) Last updated: 2024-10-01
Relaxed Lattice-Based Programmable Hash Functions: New Efficient Adaptively Secure IBEs
Xingye Lu, Jingjing Fan, Man Ho AU
Public-key cryptography

In this paper, we introduce the notion of relaxed lattice-based programmable hash function (RPHF), which is a novel variant of lattice-based programmable hash functions (PHFs). Lattice-based PHFs, together with preimage trapdoor functions (TDFs), have been widely utilized (implicitly or explicitly) in the construction of adaptively secure identity-based encryption (IBE) schemes. The preimage length and the output length of the underlying PHF and TDF together determine the user secret key and...

2024/1495 (PDF) Last updated: 2024-10-15
Lattice-Based Vulnerabilities in Lee Metric Post-Quantum Cryptosystems
Anna-Lena Horlemann, Karan Khathuria, Marc Newman, Amin Sakzad, Carlos Vela Cabello
Public-key cryptography

Post-quantum cryptography has gained attention due to the need for secure cryptographic systems in the face of quantum computing. Code-based and lattice-based cryptography are two promi- nent approaches, both heavily studied within the NIST standardization project. Code-based cryptography—most prominently exemplified by the McEliece cryptosystem—is based on the hardness of decoding random linear error-correcting codes. Despite the McEliece cryptosystem having been unbroken for several...

2024/1460 (PDF) Last updated: 2024-09-18
PPSA: Polynomial Private Stream Aggregation for Time-Series Data Analysis
Antonia Januszewicz, Daniela Medrano Gutierrez, Nirajan Koirala, Jiachen Zhao, Jonathan Takeshita, Jaewoo Lee, Taeho Jung
Cryptographic protocols

Modern data analytics requires computing functions on streams of data points from many users that are challenging to calculate, due to both the high scale and nontrivial nature of the computation at hand. The need for data privacy complicates this matter further, as general-purpose privacy-enhancing technologies face limitations in at least scalability or utility. Existing work has attempted to improve this by designing purpose-built protocols for the use case of Private Stream Aggregation;...

2024/1459 (PDF) Last updated: 2024-09-18
Verifiable Oblivious Pseudorandom Functions from Lattices: Practical-ish and Thresholdisable
Martin R. Albrecht, Kamil Doruk Gur
Cryptographic protocols

We revisit the lattice-based verifiable oblivious PRF construction from PKC'21 and remove or mitigate its central three sources of inefficiency. First, applying Rényi divergence arguments, we eliminate one superpolynomial factor from the ciphertext modulus \(q\), allowing us to reduce the overall bandwidth consumed by RLWE samples by about a factor of four. This necessitates us introducing intermediate unpredictability notions to argue PRF security of the final output in the Random Oracle...

2024/1439 (PDF) Last updated: 2024-11-27
Scabbard: An Exploratory Study on Hardware Aware Design Choices of Learning with Rounding-based Key Encapsulation Mechanisms
Suparna Kundu, Quinten Norga, Angshuman Karmakar, Shreya Gangopadhyay, Jose Maria Bermudo Mera, Ingrid Verbauwhede
Implementation

Recently, the construction of cryptographic schemes based on hard lattice problems has gained immense popularity. Apart from being quantum resistant, lattice-based cryptography allows a wide range of variations in the underlying hard problem. As cryptographic schemes can work in different environments under different operational constraints such as memory footprint, silicon area, efficiency, power requirement, etc., such variations in the underlying hard problem are very useful for designers...

2024/1295 (PDF) Last updated: 2024-08-19
Identity-Based Encryption from Lattices with More Compactness in the Standard Model
Weidan Ji, Zhedong Wang, Haoxiang Jin, Qi Wang, Geng Wang, Dawu Gu
Public-key cryptography

Lattice-based identity-based encryption having both efficiency and provable security in the standard model is currently still a challenging task and has drawn much attention. In this work, we introduce a new IBE construction from NTRU lattices in the standard model, based on the framework proposed by Agrawal, Boneh, and Boyen (EUROCRYPT 2010). Particularly, by introducing the NTRU trapdoor and the RingLWE computational assumption, we remove a crux restriction of the column number and obtain...

2024/1289 (PDF) Last updated: 2024-09-30
Improved Lattice Blind Signatures from Recycled Entropy
Corentin Jeudy, Olivier Sanders
Public-key cryptography

Blind signatures represent a class of cryptographic primitives enabling privacy-preserving authentication with several applications such as e-cash or e-voting. It is still a very active area of research, in particular in the post-quantum setting where the history of blind signatures has been hectic. Although it started to shift very recently with the introduction of a few lattice-based constructions, all of the latter give up an important characteristic of blind signatures (size, efficiency,...

2024/1287 (PDF) Last updated: 2024-10-24
Basic Lattice Cryptography: The concepts behind Kyber (ML-KEM) and Dilithium (ML-DSA)
Vadim Lyubashevsky
Public-key cryptography

This tutorial focuses on describing the fundamental mathematical concepts and design decisions used in the two ``main'' lattice schemes standardized by NIST and included in the CNSA 2.0 algorithmic suite. They are the KEM / encryption scheme CRYSTALS-Kyber (ML-KEM) and the signature scheme CRYSTALS-Dilithium (ML-DSA) . In addition, we will also give the main ideas behind other lattice-based KEMs like Frodo and NTRU.

2024/1282 (PDF) Last updated: 2024-09-02
NTRU+PKE: Efficient Public-Key Encryption Schemes from the NTRU Problem
Jonghyun Kim, Jong Hwan Park
Public-key cryptography

We propose a new NTRU-based Public-Key Encryption (PKE) scheme called $\mathsf{NTRU+}\mathsf{PKE}$, which effectively incorporates the Fujisaki-Okamoto transformation for PKE (denoted as $\mathsf{FO}_{\mathsf{PKE}}$) to achieve chosen-ciphertext security in the Quantum Random Oracle Model (QROM). While $\mathsf{NTRUEncrypt}$, a first-round candidate in the NIST PQC standardization process, was proven to be chosen-ciphertext secure in the Random Oracle Model (ROM), it lacked corresponding...

2024/1243 (PDF) Last updated: 2024-10-30
Tailorable codes for lattice-based KEMs with applications to compact ML-KEM instantiations
Thales B. Paiva, Marcos A. Simplicio Jr, Syed Mahbub Hafiz, Bahattin Yildiz, Eduardo L. Cominetti, Henrique S. Ogawa
Public-key cryptography

Compared to elliptic curve cryptography, a main drawback of lattice-based schemes is the larger size of their public keys and ciphertexts. A common procedure for compressing these objects consists essentially of dropping some of their least significant bits. Albeit effective for compression, there is a limit to the number of bits to be dropped before we get a noticeable decryption failure rate (DFR), which is a security concern. To address this issue, this paper presents a family of...

2024/1211 (PDF) Last updated: 2024-08-06
A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems
Julius Hermelink, Silvan Streit, Erik Mårtensson, Richard Petri
Attacks and cryptanalysis

Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice. In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks. We define two...

2024/1194 (PDF) Last updated: 2024-07-24
Hardware Implementation and Security Analysis of Local-Masked NTT for CRYSTALS-Kyber
Rafael Carrera Rodriguez, Emanuele Valea, Florent Bruguier, Pascal Benoit
Implementation

The rapid evolution of post-quantum cryptography, spurred by standardization efforts such as those led by NIST, has highlighted the prominence of lattice-based cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist regarding the security of cryptographic implementations, particularly in the face of Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially single-trace...

2024/1192 (PDF) Last updated: 2024-07-24
Towards ML-KEM & ML-DSA on OpenTitan
Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom, Peter Schwabe, Tobias Stelzer, Andreas Zankl
Implementation

This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography. We start by carefully optimizing ML-KEM and ML-DSA - the two primary algorithms selected by NIST for standardization - in software targeting the OTBN accelerator. Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...

2024/1177 (PDF) Last updated: 2024-07-21
Cryptanalysis of two post-quantum authenticated key agreement protocols
Mehdi Abri, Hamid Mala
Attacks and cryptanalysis

As the use of the internet and digital devices has grown rapidly, keeping digital communications secure has become very important. Authenticated Key Agreement (AKA) protocols play a vital role in securing digital communications. These protocols enable the communicating parties to mutually authenticate and securely establish a shared secret key. The emergence of quantum computers makes many existing AKA protocols vulnerable to their immense computational power. Consequently, designing new...

2024/1174 (PDF) Last updated: 2024-07-20
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis

As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...

2024/1170 (PDF) Last updated: 2024-07-29
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography

Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...

2024/1137 (PDF) Last updated: 2024-07-12
Cryptanalysis of EagleSign
Ludo N. Pulles, Mehdi Tibouchi
Attacks and cryptanalysis

EagleSign is one of the 40 “Round 1 Additional Signatures” that is accepted for consideration in the supplementary round of the Post-Quantum Cryptography standardization process, organized by NIST. Its design is based on structured lattices, and it boasts greater simplicity and performance compared to the two lattice signatures already selected for standardization: Falcon and Dilithium. In this paper, we show that those claimed advantages come at the cost of security. More precisely, we...

2024/1023 (PDF) Last updated: 2024-06-25
Constant-Size Unbounded Multi-Hop Fully Homomorphic Proxy Re-Encryption from Lattices
Feixiang Zhao, Huaxiong Wang, Jian Weng
Public-key cryptography

Proxy re-encryption is a cryptosystem that achieves efficient encrypted data sharing by allowing a proxy to transform a ciphertext encrypted under one key into another ciphertext under a different key. Homomorphic proxy re-encryption (HPRE) extends this concept by integrating homomorphic encryption, allowing not only the sharing of encrypted data but also the homomorphic computations on such data. The existing HPRE schemes, however, are limited to a single or bounded number of hops of...

2024/965 (PDF) Last updated: 2024-06-15
Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things
Shiyuan Xu, Xue Chen, Yu Guo, Siu-Ming Yiu, Shang Gao, Bin Xiao
Public-key cryptography

Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage...

2024/960 (PDF) Last updated: 2024-06-14
Designs for practical SHE schemes based on Ring-LWR
Madalina Bolboceanu, Anamaria Costache, Erin Hales, Rachel Player, Miruna Rosca, Radu Titiu
Public-key cryptography

The Learning with Errors problem (LWE) and its variants are among the most popular assumptions underlying lattice-based cryptography. The Learning with Rounding problem (LWR) can be thought of as a deterministic variant of LWE. While lattice-based cryptography is known to enable many advanced constructions, constructing Fully Homomorphic Encryption schemes based on LWR remains an under-explored part of the literature. In this work, we present a thorough study of Somewhat Homomorphic...

2024/927 (PDF) Last updated: 2024-06-12
MATHEMATICAL SPECULATIONS ON CRYPTOGRAPHY
Anjali C B
Foundations

The current cryptographic frameworks like RSA, ECC, and AES are potentially under quantum threat. Quantum cryptographic and post-quantum cryptography are being extensively researched for securing future information. The quantum computer and quantum algorithms are still in the early developmental stage and thus lack scalability for practical application. As a result of these challenges, most researched PQC methods are lattice-based, code-based, ECC isogeny, hash-based, and multivariate...

2024/864 (PDF) Last updated: 2024-05-31
Collaborative, Segregated NIZK (CoSNIZK) and More Efficient Lattice-Based Direct Anonymous Attestation
Liqun Chen, Patrick Hough, Nada El Kassem
Cryptographic protocols

Direct Anonymous Attestation (DAA) allows a (host) device with a Trusted Platform Module (TPM) to prove that it has a certified configuration of hardware and software whilst preserving the privacy of the device. All deployed DAA schemes are based on classical security assumptions. Despite a long line of works proposing post-quantum designs, the vast majority give only theoretical schemes and where concrete parameters are computed, their efficiency is far from practical. Our first...

2024/810 (PDF) Last updated: 2024-05-24
The Perils of Limited Key Reuse: Adaptive and Parallel Mismatch Attacks with Post-processing Against Kyber
Qian Guo, Erik Mårtensson, Adrian Åström
Attacks and cryptanalysis

In this paper, we study the robustness of Kyber, the Learning With Errors (LWE)-based Key Encapsulation Mechanism (KEM) chosen for standardization by NIST, against key mismatch attacks. We demonstrate that Kyber's security levels can be compromised with a few mismatch queries by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in CPA-secure Kyber. We further...

2024/788 (PDF) Last updated: 2024-05-22
A Fault-Resistant NTT by Polynomial Evaluation and Interpolation
Sven Bauer, Fabrizio De Santis, Kristjane Koleci, Anita Aghaie

In computer arithmetic operations, the Number Theoretic Transform (NTT) plays a significant role in the efficient implementation of cyclic and nega-cyclic convolutions with the application of multiplying large integers and large degree polynomials. Multiplying polynomials is a common operation in lattice-based cryptography. Hence, the NTT is a core component of several lattice-based cryptographic algorithms. Two well-known examples are the key encapsulation mechanism Kyber and the...

2024/763 (PDF) Last updated: 2024-10-26
Incorporating SIS Problem into Luby-Rackoff Cipher
Yu Morishima, Masahiro Kaminaga
Secret-key cryptography

With the rise of quantum computing, the security of traditional cryptographic systems, especially those vulnerable to quantum attacks, is under threat. While public key cryptography has been widely studied in post-quantum security, symmetric-key cryptography has received less attention. This paper explores using the Ajtai-Micciancio hash function, based on the Short Integer Solution (SIS) problem, as a pseudorandom function in the Luby-Rackoff cipher. Since lattice-based problems like SIS...

2024/732 (PDF) Last updated: 2024-06-11
Compact Encryption based on Module-NTRU problems
Shi Bai, Hansraj Jangir, Hao Lin, Tran Ngo, Weiqiang Wen, Jinwei Zheng
Public-key cryptography

The Module-NTRU problem, introduced by Cheon, Kim, Kim, Son (IACR ePrint 2019/1468), and Chuengsatiansup, Prest, Stehlé, Wallet, Xagawa (ASIACCS ’20), generalizes the versatile NTRU assump- tion. One of its main advantages lies in its ability to offer greater flexibil- ity on parameters, such as the underlying ring dimension. In this work, we present several lattice-based encryption schemes, which are IND-CPA (or OW-CPA) secure in the standard model based on the Module-NTRU and...

2024/714 (PDF) Last updated: 2024-05-27
Learning with Quantization: Construction, Hardness, and Applications
Shanxiang Lyu, Ling Liu, Cong Ling
Foundations

This paper presents a generalization of the Learning With Rounding (LWR) problem, initially introduced by Banerjee, Peikert, and Rosen, by applying the perspective of vector quantization. In LWR, noise is induced by scalar quantization. By considering a new variant termed Learning With Quantization (LWQ), we explore large-dimensional fast-decodable lattices with superior quantization properties, aiming to enhance the compression performance over scalar quantization. We identify polar...

2024/713 (PDF) Last updated: 2024-06-11
Analyzing Pump and jump BKZ algorithm using dynamical systems
Leizhang Wang
Attacks and cryptanalysis

The analysis of the reduction effort of the lattice reduction algorithm is important in estimating the hardness of lattice-based cryptography schemes. Recently many lattice challenge records have been cracked by using the Pnj-BKZ algorithm which is the default lattice reduction algorithm used in G6K, such as the TU Darmstadt LWE and SVP Challenges. However, the previous estimations of the Pnj-BKZ algorithm are simulator algorithms rather than theoretical upper bound analyses. In this work,...

2024/712 (PDF) Last updated: 2024-05-15
Quantum NV Sieve on Grover for Solving Shortest Vector Problem
Hyunji Kim, Kyungbae Jang, Hyunjun Kim, Anubhab Baksi, Sumanta Chakraborty, Hwajeong Seo
Attacks and cryptanalysis

Quantum computers can efficiently model and solve several challenging problems for classical computers, raising concerns about potential security reductions in cryptography. NIST is already considering potential quantum attacks in the development of post-quantum cryptography by estimating the quantum resources required for such quantum attacks. In this paper, we present quantum circuits for the NV sieve algorithm to solve the Shortest Vector Problem (SVP), which serves as the security...

2024/709 (PDF) Last updated: 2024-09-12
Masked Computation the Floor Function and its Application to the FALCON Signature
Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier
Public-key cryptography

FALCON is candidate for standardization of the new Post Quantum Cryptography (PQC) primitives by the National Institute of Standards and Technology (NIST). However, it remains a challenge to define efficient countermeasures against side-channel attacks (SCA) for this algorithm. FALCON is a lattice-based signature that relies on rational numbers which is unusual in the cryptography field. While recent work proposed a solution to mask the addition and the multiplication, some roadblocks...

2024/686 (PDF) Last updated: 2024-05-04
Unstructured Inversions of New Hope
Ian Malloy
Attacks and cryptanalysis

Introduced as a new protocol implemented in “Chrome Canary” for the Google Inc. Chrome browser, “New Hope” is engineered as a post-quantum key exchange for the TLS 1.2 protocol. The structure of the exchange is revised lattice-based cryptography. New Hope incorporates the key-encapsulation mechanism of Peikert which itself is a modified Ring-LWE scheme. The search space used to introduce the closest-vector problem is generated by an intersection of a tesseract and hexadecachoron, or the...

2024/652 Last updated: 2024-05-08
Compact and Secure Zero-Knowledge Proofs for Quantum-Resistant Cryptography from Modular Lattice Innovations
Samuel Lavery
Public-key cryptography

This paper presents a comprehensive security analysis of the Adh zero-knowledge proof system, a novel lattice-based, quantum-resistant proof of possession system. The Adh system offers compact key and proof sizes, making it suitable for real-world digital signature and public key agreement protocols. We explore its security by reducing it to the hardness of the Module-ISIS problem and introduce three new variants: Module-ISIS+, Module-ISIS*, and Module-ISIS**. These constructions enhance...

2024/650 (PDF) Last updated: 2024-04-28
Hash-based Direct Anonymous Attestation
Liqun Chen, Changyu Dong, Nada El Kassem, Christopher J.P. Newton, Yalan Wang
Cryptographic protocols

Direct Anonymous Attestation (DAA) was designed for the Trusted Platform Module (TPM) and versions using RSA and elliptic curve cryptography have been included in the TPM specifications and in ISO/IEC standards. These standardised DAA schemes have their security based on the factoring or discrete logarithm problems and are therefore insecure against quantum attackers. Research into quantum-resistant DAA has resulted in several lattice-based schemes. Now in this paper, we propose the first...

2024/601 (PDF) Last updated: 2024-04-18
Improved Provable Reduction of NTRU and Hypercubic Lattices
Henry Bambury, Phong Q. Nguyen
Attacks and cryptanalysis

Lattice-based cryptography typically uses lattices with special properties to improve efficiency. We show how blockwise reduction can exploit lattices with special geometric properties, effectively reducing the required blocksize to solve the shortest vector problem to half of the lattice's rank, and in the case of the hypercubic lattice $\mathbb{Z}^n$, further relaxing the approximation factor of blocks to $\sqrt{2}$. We study both provable algorithms and the heuristic well-known primal...

2024/585 (PDF) Last updated: 2024-04-29
A Complete Beginner Guide to the Number Theoretic Transform (NTT)
Ardianto Satriawan, Rella Mareta, Hanho Lee
Foundations

The Number Theoretic Transform (NTT) is a powerful mathematical tool that has become increasingly important in developing Post Quantum Cryptography (PQC) and Homomorphic Encryption (HE). Its ability to efficiently calculate polynomial multiplication using the convolution theorem with a quasi-linear complexity $O(n \log{n})$ instead of $O(n^2)$ when implemented with Fast Fourier Transform-style algorithms has made it a key component in modern cryptography. FFT-style NTT algorithm or fast-NTT...

2024/582 (PDF) Last updated: 2024-08-18
Improved Alternating-Moduli PRFs and Post-Quantum Signatures
Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, Peter Rindal
Cryptographic protocols

We revisit the alternating-moduli paradigm for constructing symmetric-key primitives with a focus on constructing efficient protocols to evaluate them using secure multi-party computation (MPC). The alternating-moduli paradigm of Boneh, Ishai, Passelègue, Sahai, and Wu (TCC 2018) enables the construction of various symmetric-key primitives with the common characteristic that the inputs are multiplied by two linear maps over different moduli. The first contribution focuses on...

2024/551 (PDF) Last updated: 2024-04-09
Probabilistic Algorithms with applications to countering Fault Attacks on Lattice based Post-Quantum Cryptography
Nimish Mishra, Debdeep Mukhopadhyay
Attacks and cryptanalysis

Fault attacks that exploit the propagation of effective/ineffective faults present a richer attack surface than Differential Fault Attacks, in the sense that the adversary depends on a single bit of information to eventually leak secret cryptographic material. In the recent past, a number of propagation-based fault attacks on Lattice-based Key Encapsulation Mechanisms have been proposed; many of which have no known countermeasures. In this work, we propose an orthogonal countermeasure...

2024/540 (PDF) Last updated: 2024-04-07
Lattice-Based Timed Cryptography
Russell W. F. Lai, Giulio Malavolta
Public-key cryptography

Timed cryptography studies primitives that retain their security only for a predetermined amount of time, such as proofs of sequential work and time-lock puzzles. This feature has proven to be useful in a large number of practical applications, e.g. randomness generation, sealed-bid auctions, and fair multi-party computation. However, the current state of affairs in timed cryptography is unsatisfactory: Virtually all efficient constructions rely on a single sequentiality assumption, namely...

2024/512 (PDF) Last updated: 2024-04-14
Single Trace is All It Takes: Efficient Side-channel Attack on Dilithium
Zehua Qiao, Yuejun Liu, Yongbin Zhou, Yuhan Zhao, Shuyi Chen
Attacks and cryptanalysis

As we enter 2024, the post-quantum cryptographic algorithm Dilithium, which emerged from the National Institute of Standards and Technology post-quantum cryptography competition, has now reached the deployment stage. This paper focuses on the practical security of Dilithium. We performed practical attacks on Dilithium2 on an STM32F4 platform. Our results indicate that an attack can be executed with just two signatures within five minutes, with a single signature offering a 60% probability of...

2024/510 (PDF) Last updated: 2024-08-19
Snake-eye Resistance from LWE for Oblivious Message Retrieval and Robust Encryption
Zeyu Liu, Katerina Sotiraki, Eran Tromer, Yunhao Wang

Oblivious message retrieval (OMR) allows resource-limited recipients to outsource the message retrieval process without revealing which messages are pertinent to which recipient. Its realizations in recent works leave an open problem: can an OMR scheme be both practical and provably secure against spamming attacks from malicious senders (i.e., DoS-resistant) under standard assumptions? In this paper, we first prove that a prior construction $\mathsf{OMRp2}$ is DoS-resistant under a...

2024/467 (PDF) Last updated: 2024-11-20
Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures
Rutchathon Chairattana-Apirom, Stefano Tessaro, Chenzhi Zhu
Cryptographic protocols

This paper gives the first lattice-based two-round threshold signature based on lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds. Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT ’23) based on specific linear hash functions, which in turns can be seen as a generalization of...

2024/464 (PDF) Last updated: 2024-03-19
ON THE IMPLEMENTATION OF A LATTICE-BASED DAA FOR VANET SYSTEM
Doryan Lesaignoux, Mikael Carmona
Implementation

Direct Anonymous Attestation (DAA) is a cryptographic protocol that enables users with a Trusted Platform Module (TPM) to authenticate without revealing their identity. Thus, DAA emerged as a good privacy-enhancing solution. Current standards have security based on factorization and discrete logarithm problem making them vulnerable to quantum computer attacks. Recently, a number of lattice-based DAA has been propose in the literature to start transition to quantum-resistant cryptography. In...

2024/457 (PDF) Last updated: 2024-03-18
Studying Lattice-Based Zero-Knowlege Proofs: A Tutorial and an Implementation of Lantern
Lena Heimberger, Florian Lugstein, Christian Rechberger
Implementation

Lattice-based cryptography has emerged as a promising new candidate to build cryptographic primitives. It offers resilience against quantum attacks, enables fully homomorphic encryption, and relies on robust theoretical foundations. Zero-knowledge proofs (ZKPs) are an essential primitive for various privacy-preserving applications. For example, anonymous credentials, group signatures, and verifiable oblivious pseudorandom functions all require ZKPs. Currently, the majority of ZKP systems are...

2024/449 (PDF) Last updated: 2024-03-15
Practical Lattice-Based Distributed Signatures for a Small Number of Signers
Nabil Alkeilani Alkadri, Nico Döttling, Sihang Pu
Public-key cryptography

$n$-out-of-$n$ distributed signatures are a special type of threshold $t$-out-of-$n$ signatures. They are created by a group of $n$ signers, each holding a share of the secret key, in a collaborative way. This kind of signatures has been studied intensively in recent years, motivated by different applications such as reducing the risk of compromising secret keys in cryptocurrencies. Towards maintaining security in the presence of quantum adversaries, Damgård et al. (J Cryptol 35(2), 2022)...

2024/411 (PDF) Last updated: 2024-07-08
Polytopes in the Fiat-Shamir with Aborts Paradigm
Henry Bambury, Hugo Beguinet, Thomas Ricosset, Eric Sageloli
Public-key cryptography

The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these distributions suffer from the complexity of their sampler. So far, those three distributions are the...

2024/281 (PDF) Last updated: 2024-02-19
Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup
Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, Hoeteck Wee
Cryptographic protocols

Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \mathcal{R}[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in\mathcal{R}$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the...

2024/257 (PDF) Last updated: 2024-07-30
LatticeFold: A Lattice-based Folding Scheme and its Applications to Succinct Proof Systems
Dan Boneh, Binyi Chen
Cryptographic protocols

Folding is a recent technique for building efficient recursive SNARKs. Several elegant folding protocols have been proposed, such as Nova, Supernova, Hypernova, Protostar, and others. However, all of them rely on an additively homomorphic commitment scheme based on discrete log, and are therefore not post-quantum secure and require a large (256-bit) field. In this work we present LatticeFold, the first lattice-based folding protocol based on the Module SIS problem. This folding protocol...

2024/195 (PDF) Last updated: 2024-02-09
PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs
Décio Luiz Gazzoni Filho, Guilherme Brandão, Gora Adj, Arwa Alblooshi, Isaac A. Canales-Martínez, Jorge Chávez-Saab, Julio López
Implementation

As CPU performance is unable to keep up with the dramatic growth of the past few decades, CPU architects are looking into domain-specific architectures to accelerate certain tasks. A recent trend is the introduction of matrix-multiplication accelerators to CPUs by manufacturers such as IBM, Intel and ARM, some of which have not launched commercially yet. Apple's systems-on-chip (SoCs) for its mobile phones, tablets and personal computers include a proprietary, undocumented CPU-coupled matrix...

2024/175 (PDF) Last updated: 2024-08-08
Lossy Cryptography from Code-Based Assumptions
Quang Dao, Aayush Jain
Public-key cryptography

Over the past few decades, we have seen a proliferation of advanced cryptographic primitives with lossy or homomorphic properties built from various assumptions such as Quadratic Residuosity, Decisional Diffie-Hellman, and Learning with Errors. These primitives imply hard problems in the complexity class $\mathcal{SZK}$ (statistical zero-knowledge); as a consequence, they can only be based on assumptions that are broken in $\mathcal{BPP}^{\mathcal{SZK}}$. This poses a barrier for building...

2024/169 (PDF) Last updated: 2024-02-05
Machine Learning based Blind Side-Channel Attacks on PQC-based KEMs - A Case Study of Kyber KEM
Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Anupam Chattopadhyay
Attacks and cryptanalysis

Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not...

2024/150 (PDF) Last updated: 2024-02-02
SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on Learning With Errors
Samuel Stevens, Emily Wenger, Cathy Yuanchen Li, Niklas Nolte, Eshika Saxena, Francois Charton, Kristin Lauter
Attacks and cryptanalysis

Learning with Errors (LWE) is a hard math problem underlying post-quantum cryptography (PQC) systems for key exchange and digital signatures, recently standardized by NIST. Prior work [Wenger et al., 2022; Li et al., 2023a;b] proposed new machine learning (ML)-based attacks on LWE problems with small, sparse secrets, but these attacks require millions of LWE samples to train on and take days to recover secrets. We propose three key methods—better pre-processing, angular embeddings and model...

2024/131 (PDF) Last updated: 2024-09-06
Practical Post-Quantum Signatures for Privacy
Sven Argo, Tim Güneysu, Corentin Jeudy, Georg Land, Adeline Roux-Langlois, Olivier Sanders
Public-key cryptography

The transition to post-quantum cryptography has been an enormous challenge and effort for cryptographers over the last decade, with impressive results such as the future NIST standards. However, the latter has so far only considered central cryptographic mechanisms (signatures or KEM) and not more advanced ones, e.g., targeting privacy-preserving applications. Of particular interest is the family of solutions called blind signatures, group signatures and anonymous credentials, for which...

2024/114 (PDF) Last updated: 2024-10-02
X2X: Low-Randomness and High-Throughput A2B and B2A Conversions for $d+1$ shares in Hardware
Quinten Norga, Jan-Pieter D'Anvers, Suparna Kundu, Ingrid Verbauwhede
Implementation

The conversion between arithmetic and Boolean masking representations (A2B \& B2A) is a crucial component for side-channel resistant implementations of lattice-based (post-quantum) cryptography. In this paper, we first propose novel $d$-order algorithms for the secure addition (SecADDChain$_q$) and B2A (B2X2A). Our secure adder is well-suited for repeated ('chained') executions, achieved through an improved method for repeated masked modular reduction. The optimized B2X2A gadget removes a...

2024/095 (PDF) Last updated: 2024-01-22
ConvKyber: Unleashing the Power of AI Accelerators for Faster Kyber with Novel Iteration-based Approaches
Tian Zhou, Fangyu Zheng, Guang Fan, Lipeng Wan, Wenxu Tang, Yixuan Song, Yi Bian, Jingqiang Lin
Implementation

The remarkable performance capabilities of AI accelerators offer promising opportunities for accelerating cryptographic algorithms, particularly in the context of lattice-based cryptography. However, current approaches to leveraging AI accelerators often remain at a rudimentary level of implementation, overlooking the intricate internal mechanisms of these devices. Consequently, a significant number of computational resources is underutilized. In this paper, we present a comprehensive...

2024/070 (PDF) Last updated: 2024-06-10
Hints from Hertz: Dynamic Frequency Scaling Side-Channel Analysis of Number Theoretic Transform in Lattice-Based KEMs
Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan, Jian Weng
Attacks and cryptanalysis

Number Theoretic Transform (NTT) has been widely used in accelerating computations in lattice-based cryptography. However, attackers can potentially launch power analysis targeting NTT because it is usually the most time-consuming part of the implementation. This extended time frame provides a natural window of opportunity for attackers. In this paper, we investigate the first CPU frequency leakage (Hertzbleed-like) attacks against NTT in lattice-based KEMs. Our key observation is that...

2024/066 (PDF) Last updated: 2024-10-01
Exploiting the Central Reduction in Lattice-Based Cryptography
Tolun Tosun, Amir Moradi, Erkay Savas
Attacks and cryptanalysis

This paper questions the side-channel security of central reduction technique, which is widely adapted in efficient implementations of Lattice-Based Cryptography (LBC). We show that the central reduction leads to a vulnerability by creating a strong dependency between the power consumption and the sign of sensitive intermediate values. We exploit this dependency by introducing the novel absolute value prediction function, which can be employed in higher-order non-profiled multi-query...

2024/026 (PDF) Last updated: 2024-01-08
Towards Compact Identity-based Encryption on Ideal Lattices
Huiwen Jia, Yupu Hu, Chunming Tang, Lin Wang
Public-key cryptography

Basic encryption and signature on lattices have comparable efficiency to their classical counterparts in terms of speed and key size. However, Identity-based Encryption (IBE) on lattices is much less efficient in terms of compactness, even when instantiated on ideal lattices and in the Random Oracle Model (ROM). This is because the underlying preimage sampling algorithm used to extract the users' secret keys requires huge public parameters. In this work, we specify a compact IBE...

2024/022 (PDF) Last updated: 2024-01-13
Fully Dynamic Attribute-Based Signatures for Circuits from Codes
San Ling, Khoa Nguyen, Duong Hieu Phan, Khai Hanh Tang, Huaxiong Wang, Yanhong Xu

Attribute-Based Signature (ABS), introduced by Maji et al. (CT-RSA'11), is an advanced privacy-preserving signature primitive that has gained a lot of attention. Research on ABS can be categorized into three main themes: expanding the expressiveness of signing policies, enabling new functionalities, and providing more diversity in terms of computational assumptions. We contribute to the development of ABS in all three dimensions, by providing a fully dynamic ABS scheme for arbitrary...

2024/002 (PDF) Last updated: 2024-04-09
Fast polynomial multiplication using matrix multiplication accelerators with applications to NTRU on Apple M1/M3 SoCs
Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López
Implementation

Efficient polynomial multiplication routines are critical to the performance of lattice-based post-quantum cryptography (PQC). As PQC standards only recently started to emerge, CPUs still lack specialized instructions to accelerate such routines. Meanwhile, deep learning has grown immeasurably in importance. Its workloads call for teraflops-level of processing power for linear algebra operations, mainly matrix multiplication. Computer architects have responded by introducing ISA extensions,...

2023/1962 (PDF) Last updated: 2024-06-19
A Survey of Polynomial Multiplications for Lattice-Based Cryptosystems
Vincent Hwang
Implementation

We survey various mathematical tools used in software works multiplying polynomials in \[ \frac{\mathbb{Z}_q[x]}{\left\langle {x^n - \alpha x - \beta} \right\rangle}. \] In particular, we survey implementation works targeting polynomial multiplications in lattice-based cryptosystems Dilithium, Kyber, NTRU, NTRU Prime, and Saber with instruction set architectures/extensions Armv7-M, Armv7E-M, Armv8-A, and AVX2. There are three emphases in this paper: (i) modular arithmetic, (ii)...

2023/1955 (PDF) Last updated: 2023-12-25
Barrett Multiplication for Dilithium on Embedded Devices
Vincent Hwang, YoungBeom Kim, Seog Chung Seo
Implementation

We optimize the number-theoretic transforms (NTTs) in Dilithium — a digital signature scheme recently standardized by the National Institute of Standards and Technology (NIST) — on Cortex-M3 and 8-bit AVR. The core novelty is the exploration of micro-architectural insights for modular multiplications. Recent work [Becker, Hwang, Kannwischer, Yang and Yang, Volume 2022 (1), Transactions on Cryptographic Hardware and Embedded Systems, 2022] found a correspondence between Montgomery and Barrett...

2023/1952 (PDF) Last updated: 2023-12-25
Overview and Discussion of Attacks on CRYSTALS-Kyber
Stone Li
Attacks and cryptanalysis

This paper reviews common attacks in classical cryptography and plausible attacks in the post-quantum era targeted at CRYSTALS-Kyber. Kyber is a recently standardized post-quantum cryptography scheme that relies on the hardness of lattice problems. Although it has undergone rigorous testing by the National Institute of Standards and Technology (NIST), there have recently been studies that have successfully executed attacks against Kyber while showing their applicability outside of controlled...

2023/1935 (PDF) Last updated: 2024-01-24
The Splitting Field of $Y^n-2$, Two-Variable NTT and Lattice-Based Cryptography
Wenzhe Yang
Foundations

The splitting field $F$ of the polynomial $Y^n-2$ is an extension over $\mathbb{Q}$ generated by $\zeta_n=\exp(2 \pi \sqrt{-1} /n)$ and $\sqrt[n]{2}$. In this paper, we lay the foundation for applying the Order-LWE in the integral ring $\mathcal{R}=\mathbb{Z}[\zeta_n, \sqrt[n]{2}]$ to cryptographic uses when $n$ is a power-of-two integer. We explicitly compute the Galois group $\text{Gal}\left(F/\mathbb{Q} \right)$ and the canonical embedding of $F$, based on which we study the properties of...

2023/1924 (PDF) Last updated: 2024-04-19
Analyzing the complexity of reference post-quantum software: the case of lattice-based KEMs
Daniel J. Bernstein
Implementation

Software for various post-quantum KEMs has been submitted by the KEM design teams to the SUPERCOP testing framework. The ref/*.c and ref/*.h files together occupy, e.g., 848 lines for ntruhps4096821, 928 lines for ntruhrss701, 1316 lines for sntrup1277, and 2633 lines for kyber1024. It is easy to see that these numbers overestimate the inherent complexity of software for these KEMs. It is more difficult to systematically measure this complexity. This paper takes these KEMs as case...

2023/1894 (PDF) Last updated: 2024-05-12
Hardness of Range Avoidance and Remote Point for Restricted Circuits via Cryptography
Yilei Chen, Jiatu Li
Foundations

A recent line of research has introduced a systematic approach to explore the complexity of explicit construction problems through the use of meta problems, namely, the range avoidance problem (abbrev. $\textsf{Avoid}$) and the remote point problem (abbrev. $\textsf{RPP}$). The upper and lower bounds for these meta problems provide a unified perspective on the complexity of specific explicit construction problems that were previously studied independently. An interesting question largely...

2023/1882 (PDF) Last updated: 2024-02-13
Lattice Based Signatures with Additional Functionalities
Swati Rawal, Sahadeo Padhye, Debiao He
Public-key cryptography

Digital signatures is a cryptographic protocol that can provide the added assurances of identity, status, proof of origin of an electronic document, and can acknowledge informed consent by the signer. Lattice based assumptions have seen a certain rush in recent years to fulfil the desire to expand the hardness assumption beyond factoring or discrete logarithm problem on which digital signatures can rely. In this article, we cover the recent progress made in digital signatures based on...

2023/1880 (PDF) Last updated: 2024-06-07
Cryptanalysis of Lattice-Based Sequentiality Assumptions and Proofs of Sequential Work
Chris Peikert, Yi Tang
Attacks and cryptanalysis

This work *completely breaks* the sequentiality assumption (and broad generalizations thereof) underlying the candidate lattice-based proof of sequential work (PoSW) recently proposed by Lai and Malavolta at CRYPTO 2023. In addition, it breaks an essentially identical variant of the PoSW, which differs from the original in only an arbitrary choice that is immaterial to the design and security proof (under the falsified assumption). This suggests that whatever security the original PoSW may...

2023/1852 (PDF) Last updated: 2023-12-01
Reduction from sparse LPN to LPN, Dual Attack 3.0
Kévin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, Jean-Pierre Tillich
Public-key cryptography

The security of code-based cryptography relies primarily on the hardness of decoding generic linear codes. Until very recently, all the best algorithms for solving the decoding problem were information set decoders ($\mathsf{ISD}$). However, recently a new algorithm called RLPN-decoding which relies on a completely different approach was introduced and it has been shown that RLPN outperforms significantly $\mathsf{ISD}$ decoders for a rather large range of rates. This RLPN decoder relies on...

2023/1824 (PDF) Last updated: 2023-12-01
Learning with Errors over Group Rings Constructed by Semi-direct Product
Jiaqi Liu, Fang-Wei Fu
Public-key cryptography

The Learning with Errors (LWE) problem has been widely utilized as a foundation for numerous cryptographic tools over the years. In this study, we focus on an algebraic variant of the LWE problem called Group ring LWE (GR-LWE). We select group rings (or their direct summands) that underlie specific families of finite groups constructed by taking the semi-direct product of two cyclic groups. Unlike the Ring-LWE problem described in \cite{lyubashevsky2010ideal}, the multiplication operation in...

2023/1823 (PDF) Last updated: 2023-11-27
PQC-NN: Post-Quantum Cryptography Neural Network
Abel C. H. Chen
Applications

In recent years, quantum computers and Shor’s quantum algorithm have been able to effectively solve NP (Non-deterministic Polynomial-time) problems such as prime factorization and discrete logarithm problems, posing a threat to current mainstream asymmetric cryptography, including RSA and Elliptic Curve Cryptography (ECC). As a result, the National Institute of Standards and Technology (NIST) in the United States call for Post-Quantum Cryptography (PQC) methods that include lattice-based...

2023/1815 (PDF) Last updated: 2023-11-24
Accelerating Polynomial Multiplication for RLWE using Pipelined FFT
Neil Thanawala, Hamid Nejatollahi, Nikil Dutt
Implementation

The evolution of quantum algorithms threatens to break public key cryptography in polynomial time. The development of quantum-resistant algorithms for the post-quantum era has seen a significant growth in the field of post quantum cryptography (PQC). Polynomial multiplication is the core of Ring Learning with Error (RLWE) lattice based cryptography (LBC) which is one of the most promising PQC candidates. In this work, we present the design of fast and energy-efficient pipelined Number...

2023/1796 (PDF) Last updated: 2023-11-21
Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification
Andersson Calle Viera, Alexandre Berzati, Karine Heydemann
Attacks and cryptanalysis

This paper presents a comprehensive analysis of the verification algorithm of the CRYSTALS-Dilithium, focusing on a C reference implementation. Limited research has been conducted on its susceptibility to fault attacks, despite its critical role in ensuring the scheme’s security. To fill this gap, we investigate three distinct fault models - randomizing faults, zeroizing faults, and skipping faults - to identify vulnerabilities within the verification process. Based on our analysis, we...

2023/1781 (PDF) Last updated: 2023-11-25
A Lattice Attack on CRYSTALS-Kyber with Correlation Power Analysis
Yen-Ting Kuo, Atsushi Takayasu
Attacks and cryptanalysis

CRYSTALS-Kyber is a key-encapsulation mechanism, whose security is based on the hardness of solving the learning-with-errors (LWE) problem over module lattices. As in its specification, Kyber prescribes the usage of the Number Theoretic Transform (NTT) for efficient polynomial multiplication. Side-channel assisted attacks against Post-Quantum Cryptography (PQC) algorithms like Kyber remain a concern in the ongoing standardization process of quantum-computer-resistant cryptosystems. Among the...

2023/1774 (PDF) Last updated: 2023-11-16
Decentralized Private Steam Aggregation from Lattices
Uddipana Dowerah, Aikaterini Mitrokotsa
Cryptographic protocols

As various industries and government agencies increasingly seek to build quantum computers, the development of post-quantum constructions for different primitives becomes crucial. Lattice-based cryptography is one of the top candidates for constructing quantum-resistant primitives. In this paper, we propose a decentralized Private Stream Aggregation (PSA) protocol based on the Learning with Errors (LWE) problem. PSA allows secure aggregation of time-series data over multiple users without...

2023/1754 (PDF) Last updated: 2024-06-05
That’s not my Signature! Fail-Stop Signatures for a Post-Quantum World
Cecilia Boschini, Hila Dahari, Moni Naor, Eyal Ronen
Public-key cryptography

The Snowden's revelations kick-started a community-wide effort to develop cryptographic tools against mass surveillance. In this work, we propose to add another primitive to that toolbox: Fail-Stop Signatures (FSS) [EC'89]. FSS are digital signatures enhanced with a forgery-detection mechanism that can protect a PPT signer from more powerful attackers. Despite the fascinating concept, research in this area stalled after the '90s. However, the ongoing transition to post-quantum...

2023/1732 (PDF) Last updated: 2023-11-08
On the Masking-Friendly Designs for Post-Quantum Cryptography
Suparna Kundu, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

Masking is a well-known and provably secure countermeasure against side-channel attacks. However, due to additional redundant computations, integrating masking schemes is expensive in terms of performance. The performance overhead of integrating masking countermeasures is heavily influenced by the design choices of a cryptographic algorithm and is often not considered during the design phase. In this work, we deliberate on the effect of design choices on integrating masking techniques into...

2023/1731 (PDF) Last updated: 2023-11-08
A practical key-recovery attack on LWE-based key- encapsulation mechanism schemes using Rowhammer
Puja Mondal, Suparna Kundu, Sarani Bhattacharya, Angshuman Karmakar, Ingrid Verbauwhede
Attacks and cryptanalysis

Physical attacks are serious threats to cryptosystems deployed in the real world. In this work, we propose a microarchitectural end-to-end attack methodology on generic lattice-based post-quantum key encapsulation mechanisms to recover the long-term secret key. Our attack targets a critical component of a Fujisaki-Okamoto transform that is used in the construction of almost all lattice-based key encapsulation mechanisms. We demonstrate our attack model on practical schemes such as Kyber and...

2023/1686 (PDF) Last updated: 2023-10-31
The Quantum Decoding Problem
André Chailloux, Jean-Pierre Tillich
Foundations

One of the founding results of lattice based cryptography is a quantum reduction from the Short Integer Solution problem to the Learning with Errors problem introduced by Regev. It has recently been pointed out by Chen, Liu and Zhandry that this reduction can be made more powerful by replacing the learning with errors problem with a quantum equivalent, where the errors are given in quantum superposition. In the context of codes, this can be adapted to a reduction from finding short...

2023/1683 (PDF) Last updated: 2024-01-15
Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4
Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, Matthias J. Kannwischer
Implementation

MAYO is a popular high-calorie condiment as well as an auspicious candidate in the ongoing NIST competition for additional post-quantum signature schemes achieving competitive signature and public key sizes. In this work, we present high-speed implementations of MAYO using the AVX2 and Armv7E-M instruction sets targeting recent x86 platforms and the Arm Cortex-M4. Moreover, the main contribution of our work is showing that MAYO can be even faster when switching from a bitsliced...

2023/1657 (PDF) Last updated: 2023-10-26
PQCMC: Post-Quantum Cryptography McEliece-Chen Implicit Certificate Scheme
Abel C. H. Chen
Public-key cryptography

In recent years, the elliptic curve Qu-Vanstone (ECQV) implicit certificate scheme has found application in security credential management systems (SCMS) and secure vehicle-to-everything (V2X) communication to issue pseudonymous certificates. However, the vulnerability of elliptic-curve cryptography (ECC) to polynomial-time attacks posed by quantum computing raises concerns. In order to enhance resistance against quantum computing threats, various post-quantum cryptography methods have been...

2023/1628 (PDF) Last updated: 2024-09-11
Cryptanalysis of the Peregrine Lattice-Based Signature Scheme
Xiuhan Lin, Moeto Suzuki, Shiduo Zhang, Thomas Espitau, Yang Yu, Mehdi Tibouchi, Masayuki Abe
Attacks and cryptanalysis

The Peregrine signature scheme is one of the candidates in the ongoing Korean post-quantum cryptography competition. It is proposed as a high-speed variant of Falcon, which is a hash-and-sign signature scheme over NTRU lattices and one of the schemes selected by NIST for standardization. To this end, Peregrine replaces the lattice Gaussian sampler in the Falcon signing procedure with a new sampler based on the centered binomial distribution. While this modification offers significant...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.