Градиент: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Строка 131: Строка 131:
* Пусть <math>u\colon X\to Y</math> — отображение между метрическими пространствами. Борелева функция <math>\rho\colon X\to \R</math> называется '''верхним градиентом''' <math>u</math> если следующее неравенство
* Пусть <math>u\colon X\to Y</math> — отображение между метрическими пространствами. Борелева функция <math>\rho\colon X\to \R</math> называется '''верхним градиентом''' <math>u</math> если следующее неравенство
*: <math>|u(p)-u(q))_Y\le \int\limits_\gamma \rho</math>
*: <math>|u(p)-u(q))_Y\le \int\limits_\gamma \rho</math>
:выполняется для произвольной спрямляемой кривой \gamma соединяющей <math>p</math> и <math>q</math> в <math>X</math>.
:выполняется для произвольной спрямляемой кривой \gamma соединяющей <math>p</math> и <math>q</math> в <math>X</math>.<ref>6.2 в Heinonen, Juha, et al. Sobolev spaces on metric measure spaces. Vol. 27. Cambridge University Press, 2015.</ref>


== См. также ==
== См. также ==

Версия от 14:53, 11 июля 2019

Операция градиента преобразует холм (слева), если смотреть на него сверху, в поле векторов (справа). Видно, что векторы направлены «в горку» и чем длиннее, тем круче наклон.

Градие́нт (от лат. gradiens, род. п. gradientis «шагающий, растущий») — вектор, своим направлением указывающий направление наибольшего возрастания некоторой величины значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный скорости роста этой величины в этом направлении.

Например, если взять в качестве высоту поверхности земли над уровнем моря, то её градиент в каждой точке поверхности будет показывать «направление самого крутого подъёма», и своей величиной характеризовать крутизну склона.

Другими словами, градиент — это производная по пространству, но в отличие от производной по одномерному времени, градиент является не скаляром, а векторной величиной.

С математической точки зрения на градиент можно смотреть как на:

  1. коэффициент линейности изменения значения функции многих переменных от изменения значения аргумента
  2. вектор в пространстве области определения скалярной функции многих переменных, составленный из частных производных
  3. строки матрицы Якоби содержат градиенты составных скалярных функций из которых состоит векторная функция многих переменных

Пространство, на котором определена функция и её градиент, может быть, вообще говоря, как обычным трёхмерным пространством, так и пространством любой другой размерности любой физической природы или чисто абстрактным (безразмерным).

Термин впервые появился в метеорологии, а в математику был введён Максвеллом в 1873 г.; обозначение тоже предложил Максвелл.

Стандартные обозначения:

или, с использованием оператора набла,

— вместо может быть любое скалярное поле, обозначенное любой буквой, например  — обозначения градиента поля: .

Ознакомление

Градиент 2D функции отображен на графике в виде синих стрелок

Представьте себе комнату, в которой температура задана с помощью скалярного поля T таким образом, что в каждой точке, заданной координатами (xyz) температура равняется T(xyz). (Предположим, что температура не изменяется с течением времени.) В каждой точке комнаты градиент функции T будет показывать направление, в котором температура возрастает быстрее всего. Величина градиента определяет насколько быстро температура возрастает в данном направлении.

Определение

Для случая трёхмерного пространства градиентом скалярной функции координат , , называется векторная функция с компонентами

Или, использовав для единичных векторов по осям прямоугольных декартовых координат :

Если  — функция переменных , то её градиентом называется -мерный вектор

компоненты которого равны частным производным по всем её аргументам.

  • Размерность вектора градиента определяется, таким образом, размерностью пространства (или многообразия), на котором задано скалярное поле, о градиенте которого идёт речь.
  • Оператором градиента называется оператор, действие которого на скалярную функцию (поле) даёт её градиент. Этот оператор иногда коротко называют просто «градиентом».

Смысл градиента любой скалярной функции в том, что его скалярное произведение с бесконечно малым вектором перемещения даёт полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена , то есть линейную (в случае общего положения она же главная) часть изменения при смещении на . Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:

Стоит здесь заметить, что поскольку формула полного дифференциала не зависит от вида координат , то есть от природы параметров x вообще, то полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат, а поскольку  — это вектор, то градиент, вычисленный обычным образом, оказывается ковариантным вектором, то есть вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного), то есть вектором, записанным в обычном базисе. Таким образом, выражение (вообще говоря — для произвольных криволинейных координат) может быть вполне правильно и инвариантно записано как:

или, опуская по правилу Эйнштейна знак суммы,

(в ортонормированном базисе мы можем писать все индексы нижними, как мы и делали выше). Однако градиент оказывается настоящим ковариантным вектором в любых криволинейных координатах.

Используя интегральную теорему

,

градиент можно выразить в интегральной форме:

здесь  — замкнутая поверхность охватывающая объём  — нормальный элемент этой поверхности.

Пример

Например, градиент функции будет представлять собой:

В физике

В различных отраслях физики используется понятие градиента различных физических полей.

Например, напряжённость электростатического поля есть минус градиент электростатического потенциала, напряжённость гравитационного поля (ускорение свободного падения) в классической теории гравитации есть минус градиент гравитационного потенциала. Консервативная сила в классической механике есть минус градиент потенциальной энергии.

В естественных науках

Понятие градиента находит применение не только в физике, но и в смежных и даже сравнительно далёких от физики науках (иногда это применение носит количественный, а иногда и просто качественный характер).

Например, градиент концентрации — нарастание или уменьшение по какому-либо направлению концентрации растворённого вещества, градиент температуры — увеличение или уменьшение по какому-то направлению температуры среды и т. д.

Градиент таких величин может быть вызван различными причинами, например, механическим препятствием, действием электромагнитных, гравитационных или других полей или различием в растворяющей способности граничащих фаз.

В экономике

В экономической теории понятие градиента используется для обоснования некоторых важных выводов. В частности, используемые для нахождения оптимума потребителя метод множителей Лагранжа и условия Куна-Таккера (позаимствованные из естественных наук) основаны на сопоставлении градиентов функции полезности и функции бюджетного ограничения.

Геометрический смысл

Рассмотрим семейство линий уровня функции :

Нетрудно показать, что градиент функции в точке перпендикулярен её линии уровня, проходящей через эту точку. Модуль градиента показывает максимальную скорость изменения функции в окрестности , то есть частоту линий уровня. Например, линии уровня высоты изображаются на топографических картах, при этом модуль градиента показывает крутизну спуска или подъёма в данной точке.

Связь с производной по направлению

Используя правило дифференцирования сложной функции, нетрудно показать, что производная функции по направлению равняется скалярному произведению градиента на единичный вектор :

Таким образом, для вычисления производной скалярной функции векторного аргумента по любому направлению достаточно знать градиент функции, то есть вектор, компоненты которого являются её частными производными.

Градиент в ортогональных криволинейных координатах

где  — коэффициенты Ламе.

Полярные координаты (на плоскости)

Коэффициенты Ламе:

Отсюда:

Коэффициенты Ламе:

Отсюда:

Коэффициенты Ламе:

Отсюда:

Вариации и обобщения

  • Пусть — отображение между метрическими пространствами. Борелева функция называется верхним градиентом если следующее неравенство
выполняется для произвольной спрямляемой кривой \gamma соединяющей и в .[1]

См. также

Примечания

  1. 6.2 в Heinonen, Juha, et al. Sobolev spaces on metric measure spaces. Vol. 27. Cambridge University Press, 2015.

Литература

  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия методы и приложения: учебное пособие для физико-математических специальностей университетов. — М.: Наука, 1986. — 759 с.

Ссылки