Gradiente

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Disambiguazione – Se stai cercando l'unità di misura dell'angolo, vedi Grado centesimale.

Nel calcolo differenziale vettoriale, il gradiente è un operatore che si applica ad una funzione a valori reali (un campo scalare) e dà come risultato una funzione vettoriale. Il gradiente di una funzione è un vettore che ha come componenti le derivate parziali della funzione - vale solo se si utilizzano coordinate cartesiane ortonormali. In generale, il gradiente di una funzione , denotato con (il simbolo si legge nabla), è definito in ciascun punto dalla seguente relazione: per un qualunque vettore , il prodotto scalare dà il valore della derivata direzionale di rispetto a .

In fisica, il gradiente di una grandezza scalare si usa per descrivere come quest'ultima vari in funzione dei suoi parametri. Ad esempio, si parla di gradiente termico per esprimere la variazione della temperatura lungo una direzione, o di gradiente di pressione per esprimere la variazione della pressione lungo una data direzione.

Il vettore gradiente di una funzione scalare punta secondo la direzione di massima crescita della funzione stessa, ed è quindi perpendicolare ai suoi Insiemi di livello.

Esempio di gradiente di una funzione . Le linee di flusso sono quelle curve che hanno come vettore tangente proprio .

Solitamente si definisce l'operatore gradiente per funzioni scalari di tre variabili , ma la definizione può essere estesa a funzioni in uno spazio euclideo di dimensione arbitraria. Il gradiente di è un campo vettoriale che in ogni punto dello spazio consente di calcolare la derivata direzionale di nella direzione di un generico vettore tramite il prodotto scalare tra e il gradiente della funzione nel punto.

Campo vettoriale del gradiente di due funzioni visualizzate mediante la densità della colorazione: il nero via via più intenso rappresenta valori via via più alti assunti dalle funzioni i quali scaturiscono dall'andamento del gradiente raffigurato dalle frecce azzurre.

Nel caso di un sistema di riferimento cartesiano ortonormale il gradiente di è il vettore che ha per componenti le derivate parziali prime calcolate nel punto:

dove , e sono i versori lungo gli assi.

Dal momento che l'operatore gradiente associa a un punto dello spazio un vettore, il gradiente di una funzione differenziabile scalare su è un campo vettoriale che associa a ogni il vettore .

Un campo gradiente è conservativo, cioè non si ha dissipazione di energia (il lavoro compiuto lungo una linea chiusa è sempre nullo). Infatti, se si calcola l'integrale di linea lungo una qualunque curva che sia chiusa, cioè tale che si ottiene:

Inoltre, le linee di flusso di un campo gradiente associato a una funzione scalare sono ovunque perpendicolari (o ortogonali) agli insiemi di livello di , cioè alle ipersuperfici date dall'equazione cartesiana al variare di . Infatti, i vettori tangenti alle linee di flusso sono dati da : si consideri allora un generico vettore tangente a una superficie di livello in un punto , e sia una curva tale che , che giace interamente su una superficie di livello e tale che il vettore tangente alla curva in è . Dato che è su una superficie di livello allora , cioè derivando si ha .

I vettori e sono allora ortogonali e l'affermazione da verificare segue per l'arbitrarietà di e . La derivata direzionale di una funzione in un dato punto di rappresenta poi il valore numerico dato dal limite del rapporto fra la variazione che essa subisce a partire dal punto per uno spostamento lungo la direzione e verso individuata dal versore rispetto a cui si deriva e lo spostamento medesimo al tendere a zero di quest'ultimo e risulta perciò positiva se è crescente lungo tale verso a partire da punto considerato, negativa o nulla in caso contrario; d'altra parte la derivata direzionale del gradiente, proprio per il suo legame col prodotto scalare, è massima (e positiva) lungo il versore che lo individua (proprio come il prodotto scalare di un vettore per un versore è massimo e positivo quando il versore ha la direzione e verso del vettore). Il gradiente è dunque normale alle superfici di livello e diretto nel verso dei livelli crescenti; esso risulta irrotazionale anche se non sempre vale il viceversa a meno che l'insieme su cui il campo è definito sia semplicemente connesso.

Varietà riemanniane

[modifica | modifica wikitesto]

Per una funzione liscia definita su una varietà riemanniana il gradiente è il campo vettoriale tale che per un qualsiasi campo vettoriale si ha:

dove indica il prodotto interno (definito dalla metrica ) tra vettori tangenti la varietà nel punto , mentre è la funzione che a ogni punto associa la derivata direzionale di nella direzione valutata in .

In modo equivalente, data una carta definita su un aperto in a valori in , la funzione è data da:

dove è la j-esima componente di nella carta considerata. Quindi la forma locale del gradiente è:

Generalizzando il caso , il gradiente di una funzione si relaziona con la sua derivata esterna nel seguente modo:

Si tratta di un caso particolare (quello in cui la metrica è quella "piatta" data dal prodotto interno) della seguente definizione. Il gradiente è il campo vettoriale associato alla 1-forma differenziale usando l'isomorfismo musicale:

definito dalla metrica .

Approssimazione lineare di una funzione

[modifica | modifica wikitesto]
Lo stesso argomento in dettaglio: Differenziale (matematica) e Approssimazione lineare.

Il gradiente di una funzione in ogni punto caratterizza la miglior approssimazione lineare di nel punto:

per vicino a , con il gradiente di calcolato in . Tale espressione è equivalente all'espansione in serie di Taylor di una funzione di più variabili in .

La migliore approssimazione lineare a una funzione in è una mappa lineare da in detta differenziale o derivata totale di in , e denotata con . Il gradiente è legato al differenziale dalla relazione:

La funzione che mappa in è anche detta differenziale o derivata esterna, e si tratta di una 1-forma differenziale.

Gradiente in diversi sistemi di coordinate

[modifica | modifica wikitesto]

Coordinate polari

[modifica | modifica wikitesto]
Coordinate polari

In si possono introdurre altri sistemi di riferimento, come quello polare:

dove rappresenta la coordinata radiale e la coordinata angolare. Per calcolare il gradiente di una funzione è sufficiente eseguire la trasformazione:

.

Ricordando che:

si ottengono le seguenti derivate:

scrivendo i vettori della base cartesiana come:

e sostituendo le espressioni trovate nell'equazione del gradiente si ha:

Perciò, semplificando, il gradiente in coordinate polari diventa il vettore:

Coordinate sferiche

[modifica | modifica wikitesto]
Coordinate sferiche

In si possono utilizzare le coordinate sferiche:

Seguendo il procedimento introdotto per le coordinate polari piane, il gradiente in coordinate sferiche diventa il vettore:

Gradiente in coordinate cilindriche

[modifica | modifica wikitesto]
Coordinate cilindriche

In coordinate cilindriche:

seguendo il procedimento introdotto per le coordinate polari piane, il gradiente diventa il vettore:

Coordinate curvilinee

[modifica | modifica wikitesto]

In coordinate curvilinee ortogonali, quando la metrica è data da , il gradiente di in un punto è il vettore:

dove e con si indica il versore della direzione -esima (con tutti gli elementi nulli tranne l'-esimo che vale 1).

Se il sistema è bidimensionale e le coordinate sono curvilinee qualunque , il gradiente della funzione diventa:

dove , e sono le entrate del tensore metrico . Infatti, siccome il gradiente può essere espresso come (con e da determinare), il differenziale della funzione in tale sistema diventa

.

Risolvendo quindi il sistema

e ricordando che (con angolo tra le due direzioni), risulta dimostrato l'asserto iniziale.

  • Nicola Fusco, Paolo Marcellini, Carlo Sbordone, Lezioni di analisi matematica due, Zanichelli, 2020, ISBN 9788808520203.
  • (EN) W. Kaplan, The Gradient Field §3.3 in Advanced Calculus, 4ª ed., Reading, Addison-Wesley, 1991, pp. 183–185.
  • (EN) P. M. Morse e H. Feshbach, The Gradient in Methods of Theoretical Physics Part I, New York, McGraw-Hill, 1953, pp. 31–32.
  • (EN) H. M. Schey, Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, 3ª ed., New York, W. W. Norton, 1997.

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
Controllo di autoritàGND (DE4323954-7
  Portale Matematica: accedi alle voci di Wikipedia che trattano di Matematica