View source on GitHub |
Normalizes x
by mean
and variance
.
tf.keras.ops.batch_normalization(
x, mean, variance, axis, offset=None, scale=None, epsilon=0.001
)
This op is typically used by the batch normalization step in a neural network. It normalizes the input tensor along the given axis.
Returns | |
---|---|
The normalized tensor. |
Example:
x = keras.ops.convert_to_tensor(
[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
)
keras.ops.batch_normalization(
x,
mean=[0.4, 0.5, 0.6],
variance=[0.67, 0.67, 0.67],
axis=-1
)
array([[-3.6624e-01, -3.6624e-01, -3.6624e-01],
[-4.6445e-09, 0.0000e+00, -1.8578e-08],
[ 3.6624e-01, 3.6624e-01, 3.6624e-01]])