View source on GitHub |
Generates variable seeds upon each call to a RNG-using function.
tf.keras.random.SeedGenerator(
seed=None, name=None, **kwargs
)
In Keras, all RNG-using methods (such as keras.random.normal()
)
are stateless, meaning that if you pass an integer seed to them
(such as seed=42
), they will return the same values at each call.
In order to get different values at each call, you must use a
SeedGenerator
instead as the seed argument. The SeedGenerator
object is stateful.
Example:
seed_gen = keras.random.SeedGenerator(seed=42)
values = keras.random.normal(shape=(2, 3), seed=seed_gen)
new_values = keras.random.normal(shape=(2, 3), seed=seed_gen)
Usage in a layer:
class Dropout(keras.Layer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.seed_generator = keras.random.SeedGenerator(1337)
def call(self, x, training=False):
if training:
return keras.random.dropout(
x, rate=0.5, seed=self.seed_generator
)
return x
Methods
from_config
@classmethod
from_config( config )
get_config
get_config()
next
next(
ordered=True
)