default search action
Gerhard Neumann
Person information
- affiliation: Karlsruhe Institute of Technology, Institute for Anthropomatics and Robotics, Germany
- affiliation: University of Lincoln, Center for Autonomous Systems (L-CAS), UK
- affiliation (former): TU Darmstadt, Department of Computer Science, Germany
- affiliation (PhD 2012): Graz University of Technology, Austria
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j53]Philipp Becker, Sebastian Mossburger, Fabian Otto, Gerhard Neumann:
Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL. RLJ 4: 1619-1655 (2024) - [j52]Manuel Zaremski, Blanca Handwerker, Christian R. G. Dreher, Fabian Leven, David Schneider, Alina Roitberg, Rainer Stiefelhagen, Gerhard Neumann, Michael Heizmann, Tamim Asfour, Barbara Deml:
Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory. Autom. 72(9): 844-860 (2024) - [j51]Jürgen Fleischer, Frederik Zanger, Volker Schulze, Gerhard Neumann, Nicole Stricker, Kai Furmans, Julius Pfrommer, Gisela Lanza, Malte Hansjosten, Patrick Fischmann, Julia Dvorak, Jan-Felix Klein, Felix Rauscher, Andreas Ebner, Marvin Carl May, Philipp Gönnheimer:
Self-learning and autonomously adapting manufacturing equipment for the circular factory. Autom. 72(9): 861-874 (2024) - [j50]Constantin Hofmann, Steffen Staab, Michael Selzer, Gerhard Neumann, Kai Furmans, Michael Heizmann, Jürgen Beyerer, Gisela Lanza, Julius Pfrommer, Tobias Düser, Jan-Felix Klein:
The role of an ontology-based knowledge backbone in a circular factory. Autom. 72(9): 875-883 (2024) - [j49]Maximilian Hüttenrauch, Gerhard Neumann:
Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning. J. Mach. Learn. Res. 25: 153:1-153:44 (2024) - [j48]Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann, Rudolf Lioutikov, Franziska Mathis-Ullrich:
Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects. IEEE Robotics Autom. Lett. 9(6): 5338-5345 (2024) - [c121]Benjamin Alt, Urs Keßner, Aleksandar Taranovic, Darko Katic, Andreas Hermann, Rainer Jäkel, Gerhard Neumann:
Domain-Specific Fine-Tuning of Large Language Models for Interactive Robot Programming. ERF (1) 2024: 274-279 - [c120]Xinkai Jiang, Paul Mattes, Xiaogang Jia, Nicolas Schreiber, Gerhard Neumann, Rudolf Lioutikov:
A Comprehensive User Study on Augmented Reality-Based Data Collection Interfaces for Robot Learning. HRI 2024: 333-342 - [c119]Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Nadia Figueroa, Gerhard Neumann, Leonel Rozo:
Neural Contractive Dynamical Systems. ICLR 2024 - [c118]Xiaogang Jia, Denis Blessing, Xinkai Jiang, Moritz Reuss, Atalay Donat, Rudolf Lioutikov, Gerhard Neumann:
Towards Diverse Behaviors: A Benchmark for Imitation Learning with Human Demonstrations. ICLR 2024 - [c117]Ge Li, Hongyi Zhou, Dominik Roth, Serge Thilges, Fabian Otto, Rudolf Lioutikov, Gerhard Neumann:
Open the Black Box: Step-based Policy Updates for Temporally-Correlated Episodic Reinforcement Learning. ICLR 2024 - [c116]Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, Gerhard Neumann:
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling. ICML 2024 - [c115]Onur Celik, Aleksandar Taranovic, Gerhard Neumann:
Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts. ICML 2024 - [c114]Rebekka Charlotte Peter, Steffen Peikert, Ludwig Haide, Doan Xuan Viet Pham, Tahar Chettaoui, Eleonora Tagliabue, Paul Maria Scheikl, Johannes Fauser, Matthias Hillenbrand, Gerhard Neumann, Franziska Mathis-Ullrich:
Lens Capsule Tearing in Cataract Surgery using Reinforcement Learning. ICRA 2024: 15501-15508 - [c113]Claudius Kienle, Benjamin Alt, Onur Celik, Philipp Becker, Darko Katic, Rainer Jäkel, Gerhard Neumann:
MuTT: A Multimodal Trajectory Transformer for Robot Skills. IROS 2024: 9644-9651 - [c112]Puze Liu, Jonas Günster, Niklas Funk, Simon Gröger, Dong Chen, Haitham Bou-Ammar, Julius Jankowski, Ante Maric, Sylvain Calinon, Andrej Orsula, Miguel S. Olivares-Méndez, Hongyi Zhou, Rudolf Lioutikov, Gerhard Neumann, Amarildo Likmeta, Amirhossein Zhalehmehrabi, Thomas Bonenfant, Marcello Restelli, Davide Tateo, Ziyuan Liu, Jan R. Peters:
A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics. NeurIPS 2024 - [c111]Hongyi Zhou, Denis Blessing, Ge Li, Onur Celik, Xiaogang Jia, Gerhard Neumann, Rudolf Lioutikov:
Variational Distillation of Diffusion Policies into Mixture of Experts. NeurIPS 2024 - [c110]Pit Henrich, Balázs Gyenes, Paul Maria Scheikl, Gerhard Neumann, Franziska Mathis-Ullrich:
Registered and Segmented Deformable Object Reconstruction from a Single View Point Cloud. WACV 2024: 3117-3126 - [i85]Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Nadia Figueroa, Gerhard Neumann, Leonel Rozo:
Neural Contractive Dynamical Systems. CoRR abs/2401.09352 (2024) - [i84]Ge Li, Hongyi Zhou, Dominik Roth, Serge Thilges, Fabian Otto, Rudolf Lioutikov, Gerhard Neumann:
Open the Black Box: Step-based Policy Updates for Temporally-Correlated Episodic Reinforcement Learning. CoRR abs/2401.11437 (2024) - [i83]Tobias Würth, Niklas Freymuth, Clemens Zimmerling, Gerhard Neumann, Luise Kärger:
Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers for non-stationary and nonlinear simulations on arbitrary meshes. CoRR abs/2402.10681 (2024) - [i82]Xiaogang Jia, Denis Blessing, Xinkai Jiang, Moritz Reuss, Atalay Donat, Rudolf Lioutikov, Gerhard Neumann:
Towards Diverse Behaviors: A Benchmark for Imitation Learning with Human Demonstrations. CoRR abs/2402.14606 (2024) - [i81]Fabian Otto, Philipp Becker, Ngo Anh Vien, Gerhard Neumann:
Vlearn: Off-Policy Learning with Efficient State-Value Function Estimation. CoRR abs/2403.04453 (2024) - [i80]Onur Celik, Aleksandar Taranovic, Gerhard Neumann:
Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts. CoRR abs/2403.06966 (2024) - [i79]Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, Gerhard Neumann:
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling. CoRR abs/2406.07423 (2024) - [i78]Xiaogang Jia, Qian Wang, Atalay Donat, Bowen Xing, Ge Li, Hongyi Zhou, Onur Celik, Denis Blessing, Rudolf Lioutikov, Gerhard Neumann:
MaIL: Improving Imitation Learning with Mamba. CoRR abs/2406.08234 (2024) - [i77]Niklas Freymuth, Philipp Dahlinger, Tobias Würth, Simon Reisch, Luise Kärger, Gerhard Neumann:
Adaptive Swarm Mesh Refinement using Deep Reinforcement Learning with Local Rewards. CoRR abs/2406.08440 (2024) - [i76]Hongyi Zhou, Denis Blessing, Ge Li, Onur Celik, Xiaogang Jia, Gerhard Neumann, Rudolf Lioutikov:
Variational Distillation of Diffusion Policies into Mixture of Experts. CoRR abs/2406.12538 (2024) - [i75]Niklas Freymuth, Philipp Dahlinger, Tobias Würth, Philipp Becker, Aleksandar Taranovic, Onno Grönheim, Luise Kärger, Gerhard Neumann:
Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations. CoRR abs/2406.14161 (2024) - [i74]Philipp Becker, Niklas Freymuth, Gerhard Neumann:
KalMamba: Towards Efficient Probabilistic State Space Models for RL under Uncertainty. CoRR abs/2406.15131 (2024) - [i73]Claudius Kienle, Benjamin Alt, Onur Celik, Philipp Becker, Darko Katic, Rainer Jäkel, Gerhard Neumann:
MuTT: A Multimodal Trajectory Transformer for Robot Skills. CoRR abs/2407.15660 (2024) - [i72]Ge Li, Dong Tian, Hongyi Zhou, Xinkai Jiang, Rudolf Lioutikov, Gerhard Neumann:
TOP-ERL: Transformer-based Off-Policy Episodic Reinforcement Learning. CoRR abs/2410.09536 (2024) - [i71]Andreas Boltres, Niklas Freymuth, Patrick Jahnke, Holger Karl, Gerhard Neumann:
Learning Sub-Second Routing Optimization in Computer Networks requires Packet-Level Dynamics. CoRR abs/2410.10377 (2024) - [i70]Balázs Gyenes, Nikolai Franke, Philipp Becker, Gerhard Neumann:
PointPatchRL - Masked Reconstruction Improves Reinforcement Learning on Point Clouds. CoRR abs/2410.18800 (2024) - [i69]Roman Freiberg, Alexander Qualmann, Ngo Anh Vien, Gerhard Neumann:
Diffusion for Multi-Embodiment Grasping. CoRR abs/2410.18835 (2024) - [i68]Emiliyan Gospodinov, Vaisakh Shaj, Philipp Becker, Stefan Geyer, Gerhard Neumann:
Adaptive World Models: Learning Behaviors by Latent Imagination Under Non-Stationarity. CoRR abs/2411.01342 (2024) - [i67]Puze Liu, Jonas Guenster, Niklas Funk, Simon Gröger, Dong Chen, Haitham Bou-Ammar, Julius Jankowski, Ante Maric, Sylvain Calinon, Andrej Orsula, Miguel S. Olivares-Méndez, Hongyi Zhou, Rudolf Lioutikov, Gerhard Neumann, Amarildo Likmeta, Amirhossein Zhalehmehrabi, Thomas Bonenfant, Marcello Restelli, Davide Tateo, Ziyuan Liu, Jan Peters:
A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics. CoRR abs/2411.05718 (2024) - [i66]Weiran Liao, Ge Li, Hongyi Zhou, Rudolf Lioutikov, Gerhard Neumann:
BMP: Bridging the Gap between B-Spline and Movement Primitives. CoRR abs/2411.10336 (2024) - [i65]Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann, Leonel Rozo:
Extended Neural Contractive Dynamical Systems: On Multiple Tasks and Riemannian Safety Regions. CoRR abs/2411.11405 (2024) - [i64]Huy Le, Miroslav Gabriel, Tai Hoang, Gerhard Neumann, Ngo Anh Vien:
Enhancing Exploration with Diffusion Policies in Hybrid Off-Policy RL: Application to Non-Prehensile Manipulation. CoRR abs/2411.14913 (2024) - [i63]Junhua Chen, Lorenz Richter, Julius Berner, Denis Blessing, Gerhard Neumann, Anima Anandkumar:
Sequential Controlled Langevin Diffusions. CoRR abs/2412.07081 (2024) - 2023
- [j47]Jairo Inga, Miriam Ruess, Jan Heinrich Robens, Thomas Nelius, Simon Rothfuß, Sean Kille, Philipp Dahlinger, Andreas Lindenmann, Roland Thomaschke, Gerhard Neumann, Sven Matthiesen, Sören Hohmann, Andrea Kiesel:
Human-machine symbiosis: A multivariate perspective for physically coupled human-machine systems. Int. J. Hum. Comput. Stud. 170: 102926 (2023) - [j46]Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann, Leonel Rozo:
Reactive motion generation on learned Riemannian manifolds. Int. J. Robotics Res. 42(10): 729-754 (2023) - [j45]Paul Maria Scheikl, Balázs Gyenes, Rayan Younis, Christoph Haas, Gerhard Neumann, Martin Wagner, Franziska Mathis-Ullrich:
LapGym - An Open Source Framework for Reinforcement Learning in Robot-Assisted Laparoscopic Surgery. J. Mach. Learn. Res. 24: 368:1-368:42 (2023) - [j44]Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, Gerhard Neumann:
ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives. IEEE Robotics Autom. Lett. 8(4): 2325-2332 (2023) - [j43]Fabian Duffhauss, Sebastian Koch, Hanna Ziesche, Ngo Anh Vien, Gerhard Neumann:
SyMFM6D: Symmetry-Aware Multi-Directional Fusion for Multi-View 6D Object Pose Estimation. IEEE Robotics Autom. Lett. 8(9): 5315-5322 (2023) - [j42]Oleg Arenz, Philipp Dahlinger, Zihan Ye, Michael Volpp, Gerhard Neumann:
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models. Trans. Mach. Learn. Res. 2023 (2023) - [c109]Ning Gao, Bernard Hohmann, Gerhard Neumann:
Enhancing Interpretable Object Abstraction via Clustering-based Slot Initialization. BMVC 2023: 471-477 - [c108]Ning Gao, Ngo Anh Vien, Hanna Ziesche, Gerhard Neumann:
SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects. CoRL 2023: 1572-1595 - [c107]Jonas Linkerhägner, Niklas Freymuth, Paul Maria Scheikl, Franziska Mathis-Ullrich, Gerhard Neumann:
Grounding Graph Network Simulators using Physical Sensor Observations. ICLR 2023 - [c106]Aleksandar Taranovic, Andras Gabor Kupcsik, Niklas Freymuth, Gerhard Neumann:
Adversarial Imitation Learning with Preferences. ICLR 2023 - [c105]Michael Volpp, Philipp Dahlinger, Philipp Becker, Christian Daniel, Gerhard Neumann:
Accurate Bayesian Meta-Learning by Accurate Task Posterior Inference. ICLR 2023 - [c104]Maximilian Xiling Li, Onur Celik, Philipp Becker, Denis Blessing, Rudolf Lioutikov, Gerhard Neumann:
Curriculum-Based Imitation of Versatile Skills. ICRA 2023: 2951-2957 - [c103]Denis Blessing, Onur Celik, Xiaogang Jia, Moritz Reuss, Maximilian Xiling Li, Rudolf Lioutikov, Gerhard Neumann:
Information Maximizing Curriculum: A Curriculum-Based Approach for Learning Versatile Skills. NeurIPS 2023 - [c102]Niklas Freymuth, Philipp Dahlinger, Tobias Würth, Simon Reisch, Luise Kärger, Gerhard Neumann:
Swarm Reinforcement Learning for Adaptive Mesh Refinement. NeurIPS 2023 - [c101]Florian Seligmann, Philipp Becker, Michael Volpp, Gerhard Neumann:
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift. NeurIPS 2023 - [c100]Vaisakh Shaj, Saleh Gholam Zadeh, Ozan Demir, Luiz R. Douat, Gerhard Neumann:
Multi Time Scale World Models. NeurIPS 2023 - [i62]Philipp Becker, Sebastian Markgraf, Fabian Otto, Gerhard Neumann:
Reinforcement Learning from Multiple Sensors via Joint Representations. CoRR abs/2302.05342 (2023) - [i61]Paul Maria Scheikl, Balázs Gyenes, Rayan Younis, Christoph Haas, Gerhard Neumann, Martin Wagner, Franziska Mathis-Ullrich:
LapGym - An Open Source Framework for Reinforcement Learning in Robot-Assisted Laparoscopic Surgery. CoRR abs/2302.09606 (2023) - [i60]Jonas Linkerhägner, Niklas Freymuth, Paul Maria Scheikl, Franziska Mathis-Ullrich, Gerhard Neumann:
Grounding Graph Network Simulators using Physical Sensor Observations. CoRR abs/2302.11864 (2023) - [i59]Denis Blessing, Onur Celik, Xiaogang Jia, Moritz Reuss, Maximilian Xiling Li, Rudolf Lioutikov, Gerhard Neumann:
Information Maximizing Curriculum: A Curriculum-Based Approach for Training Mixtures of Experts. CoRR abs/2303.15349 (2023) - [i58]Niklas Freymuth, Philipp Dahlinger, Tobias Würth, Luise Kärger, Gerhard Neumann:
Swarm Reinforcement Learning For Adaptive Mesh Refinement. CoRR abs/2304.00818 (2023) - [i57]Maximilian Xiling Li, Onur Celik, Philipp Becker, Denis Blessing, Rudolf Lioutikov, Gerhard Neumann:
Curriculum-Based Imitation of Versatile Skills. CoRR abs/2304.05171 (2023) - [i56]Florian Seligmann, Philipp Becker, Michael Volpp, Gerhard Neumann:
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift. CoRR abs/2306.12306 (2023) - [i55]Fabian Otto, Hongyi Zhou, Onur Celik, Ge Li, Rudolf Lioutikov, Gerhard Neumann:
MP3: Movement Primitive-Based (Re-)Planning Policy. CoRR abs/2306.12729 (2023) - [i54]Fabian Duffhauss, Sebastian Koch, Hanna Ziesche, Ngo Anh Vien, Gerhard Neumann:
SyMFM6D: Symmetry-aware Multi-directional Fusion for Multi-View 6D Object Pose Estimation. CoRR abs/2307.00306 (2023) - [i53]Philipp Blättner, Johannes Brand, Gerhard Neumann, Ngo Anh Vien:
DMFC-GraspNet: Differentiable Multi-Fingered Robotic Grasp Generation in Cluttered Scenes. CoRR abs/2308.00456 (2023) - [i52]Ning Gao, Bernard Hohmann, Gerhard Neumann:
Enhancing Interpretable Object Abstraction via Clustering-based Slot Initialization. CoRR abs/2308.11369 (2023) - [i51]Ning Gao, Ngo Anh Vien, Hanna Ziesche, Gerhard Neumann:
SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects. CoRR abs/2308.16528 (2023) - [i50]Vaisakh Shaj, Saleh Gholam Zadeh, Ozan Demir, Luiz Ricardo Douat, Gerhard Neumann:
Multi Time Scale World Models. CoRR abs/2310.18534 (2023) - [i49]Philipp Dahlinger, Philipp Becker, Maximilian Hüttenrauch, Gerhard Neumann:
Information-Theoretic Trust Regions for Stochastic Gradient-Based Optimization. CoRR abs/2310.20574 (2023) - [i48]Philipp Dahlinger, Niklas Freymuth, Michael Volpp, Tai Hoang, Gerhard Neumann:
Latent Task-Specific Graph Network Simulators. CoRR abs/2311.05256 (2023) - [i47]Pit Henrich, Balázs Gyenes, Paul Maria Scheikl, Gerhard Neumann, Franziska Mathis-Ullrich:
Registered and Segmented Deformable Object Reconstruction from a Single View Point Cloud. CoRR abs/2311.07357 (2023) - [i46]Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann, Rudolf Lioutikov, Franziska Mathis-Ullrich:
Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects. CoRR abs/2312.10008 (2023) - [i45]Benjamin Alt, Urs Keßner, Aleksandar Taranovic, Darko Katic, Andreas Hermann, Rainer Jäkel, Gerhard Neumann:
Domain-Specific Fine-Tuning of Large Language Models for Interactive Robot Programming. CoRR abs/2312.13905 (2023) - 2022
- [j41]Philipp Becker, Gerhard Neumann:
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning. Trans. Mach. Learn. Res. 2022 (2022) - [c99]Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Ngo Anh Vien, Gerhard Neumann:
Deep Black-Box Reinforcement Learning with Movement Primitives. CoRL 2022: 1244-1265 - [c98]Niklas Freymuth, Nicolas Schreiber, Aleksandar Taranovic, Philipp Becker, Gerhard Neumann:
Inferring Versatile Behavior from Demonstrations by Matching Geometric Descriptors. CoRL 2022: 1379-1389 - [c97]Ning Gao, Hanna Ziesche, Ngo Anh Vien, Michael Volpp, Gerhard Neumann:
What Matters For Meta-Learning Vision Regression Tasks? CVPR 2022: 14756-14766 - [c96]Fabian Duffhauss, Ngo Anh Vien, Hanna Ziesche, Gerhard Neumann:
FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion. ECCV (39) 2022: 674-691 - [c95]Vaisakh Shaj, Dieter Büchler, Rohit Sonker, Philipp Becker, Gerhard Neumann:
Hidden Parameter Recurrent State Space Models For Changing Dynamics Scenarios. ICLR 2022 - [c94]Baris Serhan, Harit Pandya, Ayse Küçükyilmaz, Gerhard Neumann:
Push-to-See: Learning Non-Prehensile Manipulation to Enhance Instance Segmentation via Deep Q-Learning. ICRA 2022: 1513-1519 - [c93]Oussama Zenkri, Ngo Anh Vien, Gerhard Neumann:
Hierarchical Policy Learning for Mechanical Search. ICRA 2022: 1954-1960 - [c92]Fabian Duffhauss, Tobias Demmler, Gerhard Neumann:
MV6D: Multi-View 6D Pose Estimation on RGB-D Frames Using a Deep Point-wise Voting Network. IROS 2022: 3568-3575 - [c91]Abdalkarim Mohtasib, Gerhard Neumann, Heriberto Cuayáhuitl:
Robot Policy Learning from Demonstration Using Advantage Weighting and Early Termination. IROS 2022: 7414-7420 - [c90]Moritz Reuss, Niels van Duijkeren, Robert Krug, Philipp Becker, Vaisakh Shaj, Gerhard Neumann:
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control. Robotics: Science and Systems 2022 - [i44]Oussama Zenkri, Ngo Anh Vien, Gerhard Neumann:
Hierarchical Policy Learning for Mechanical Search. CoRR abs/2202.13680 (2022) - [i43]Ning Gao, Hanna Ziesche, Ngo Anh Vien, Michael Volpp, Gerhard Neumann:
What Matters For Meta-Learning Vision Regression Tasks? CoRR abs/2203.04905 (2022) - [i42]Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann, Leonel Dario Rozo:
Reactive Motion Generation on Learned Riemannian Manifolds. CoRR abs/2203.07761 (2022) - [i41]Ruijie Chen, Ning Gao, Ngo Anh Vien, Hanna Ziesche, Gerhard Neumann:
Meta-Learning Regrasping Strategies for Physical-Agnostic Objects. CoRR abs/2205.11110 (2022) - [i40]Moritz Reuss, Niels van Duijkeren, Robert Krug, Philipp Becker, Vaisakh Shaj, Gerhard Neumann:
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control. CoRR abs/2205.13804 (2022) - [i39]Maximilian Hüttenrauch, Gerhard Neumann:
Regret-Aware Black-Box Optimization with Natural Gradients, Trust-Regions and Entropy Control. CoRR abs/2206.06090 (2022) - [i38]Yumeng Li, Ning Gao, Hanna Ziesche, Gerhard Neumann:
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes. CoRR abs/2206.07162 (2022) - [i37]Vaisakh Shaj, Dieter Buchler, Rohit Sonker, Philipp Becker, Gerhard Neumann:
Hidden Parameter Recurrent State Space Models For Changing Dynamics Scenarios. CoRR abs/2206.14697 (2022) - [i36]Abdalkarim Mohtasib, Gerhard Neumann, Heriberto Cuayáhuitl:
Robot Policy Learning from Demonstration Using Advantage Weighting and Early Termination. CoRR abs/2208.00478 (2022) - [i35]Fabian Duffhauss, Tobias Demmler, Gerhard Neumann:
MV6D: Multi-View 6D Pose Estimation on RGB-D Frames Using a Deep Point-wise Voting Network. CoRR abs/2208.01172 (2022) - [i34]Fabian Duffhauss, Ngo Anh Vien, Hanna Ziesche, Gerhard Neumann:
FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion. CoRR abs/2209.11277 (2022) - [i33]Oleg Arenz, Philipp Dahlinger, Zihan Ye, Michael Volpp, Gerhard Neumann:
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models. CoRR abs/2209.11533 (2022) - [i32]Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, Gerhard Neumann:
ProDMPs: A Unified Perspective on Dynamic and Probabilistic Movement Primitives. CoRR abs/2210.01531 (2022) - [i31]Niklas Freymuth, Nicolas Schreiber, Philipp Becker, Aleksandar Taranovic, Gerhard Neumann:
Inferring Versatile Behavior from Demonstrations by Matching Geometric Descriptors. CoRR abs/2210.08121 (2022) - [i30]Philipp Becker, Gerhard Neumann:
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning. CoRR abs/2210.09256 (2022) - [i29]Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Ngo Anh Vien, Gerhard Neumann:
Deep Black-Box Reinforcement Learning with Movement Primitives. CoRR abs/2210.09622 (2022) - 2021
- [j40]R. B. Ashith Shyam, Zhou Hao, Umberto Montanaro, Shilp Dixit, Arunkumar Rathinam, Yang Gao, Gerhard Neumann, Saber Fallah:
Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation. Frontiers Robotics AI 8: 638849 (2021) - [j39]Riccardo Polvara, Francesco Del Duchetto, Gerhard Neumann, Marc Hanheide:
Navigate-and-Seek: A Robotics Framework for People Localization in Agricultural Environments. IEEE Robotics Autom. Lett. 6(4): 6577-6584 (2021) - [j38]Juan Parras, Maximilian Hüttenrauch, Santiago Zazo, Gerhard Neumann:
Deep Reinforcement Learning for Attacking Wireless Sensor Networks. Sensors 21(12): 4060 (2021) - [c89]Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, Gerhard Neumann:
Specializing Versatile Skill Libraries using Local Mixture of Experts. CoRL 2021: 1423-1433 - [c88]Maximilian Hüttenrauch, Gerhard Neumann:
Coordinate ascent MORE with adaptive entropy control for population-based regret minimization. GECCO Companion 2021: 1493-1497 - [c87]Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Maria Ziesche, Gerhard Neumann:
Differentiable Trust Region Layers for Deep Reinforcement Learning. ICLR 2021 - [c86]Michael Volpp, Fabian Flürenbrock, Lukas Großberger, Christian Daniel, Gerhard Neumann:
Bayesian Context Aggregation for Neural Processes. ICLR 2021 - [c85]Paul Maria Scheikl, Balázs Gyenes, Tornike Davitashvili, Rayan Younis, André Schulze, Beat P. Müller-Stich, Gerhard Neumann, Martin Wagner, Franziska Mathis-Ullrich:
Cooperative Assistance in Robotic Surgery through Multi-Agent Reinforcement Learning. IROS 2021: 1859-1864 - [c84]Alireza Ranjbar, Ngo Anh Vien, Hanna Ziesche, Joschka Boedecker, Gerhard Neumann:
Residual Feedback Learning for Contact-Rich Manipulation Tasks with Uncertainty. IROS 2021: 2383-2390 - [c83]Kim Tien Ly, Mithun Poozhiyil, Harit Pandya, Gerhard Neumann, Ayse Küçükyilmaz:
Intent-Aware Predictive Haptic Guidance and its Application to Shared Control Teleoperation. RO-MAN 2021: 565-572 - [c82]Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann, Leonel Dario Rozo:
Learning Riemannian Manifolds for Geodesic Motion Skills. Robotics: Science and Systems 2021 - [c81]Abdalkarim Mohtasib, Gerhard Neumann, Heriberto Cuayáhuitl:
A Study on Dense and Sparse (Visual) Rewards in Robot Policy Learning. TAROS 2021: 3-13 - [e1]Aleksandra Faust, David Hsu, Gerhard Neumann:
Conference on Robot Learning, 8-11 November 2021, London, UK. Proceedings of Machine Learning Research 164, PMLR 2021 [contents] - [i28]Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, Gerhard Neumann:
Differentiable Trust Region Layers for Deep Reinforcement Learning. CoRR abs/2101.09207 (2021) - [i27]Alireza Ranjbar, Ngo Anh Vien, Hanna Ziesche, Joschka Boedecker, Gerhard Neumann:
Residual Feedback Learning for Contact-Rich Manipulation Tasks with Uncertainty. CoRR abs/2106.04306 (2021) - [i26]Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann, Leonel Dario Rozo:
Learning Riemannian Manifolds for Geodesic Motion Skills. CoRR abs/2106.04315 (2021) - [i25]Ngo Anh Vien, Gerhard Neumann:
Differentiable Robust LQR Layers. CoRR abs/2106.05535 (2021) - [i24]Riccardo Polvara, Francesco Del Duchetto, Gerhard Neumann, Marc Hanheide:
Navigate-and-Seek: a Robotics Framework for People Localization in Agricultural Environments. CoRR abs/2107.03850 (2021) - [i23]Abdalkarim Mohtasib, Gerhard Neumann, Heriberto Cuayáhuitl:
A Study on Dense and Sparse (Visual) Rewards in Robot Policy Learning. CoRR abs/2108.03222 (2021) - [i22]Paul Maria Scheikl, Balázs Gyenes, Tornike Davitashvili, Rayan Younis, André Schulze, Beat P. Müller-Stich, Gerhard Neumann, Martin Wagner, Franziska Mathis-Ullrich:
Cooperative Assistance in Robotic Surgery through Multi-Agent Reinforcement Learning. CoRR abs/2110.04857 (2021) - [i21]Niklas Freymuth, Philipp Becker, Gerhard Neumann:
Versatile Inverse Reinforcement Learning via Cumulative Rewards. CoRR abs/2111.07667 (2021) - [i20]Giao Nguyen-Quynh, Philipp Becker, Chen Qiu, Maja Rudolph, Gerhard Neumann:
Switching Recurrent Kalman Networks. CoRR abs/2111.08291 (2021) - [i19]Jairo Inga, Miriam Ruess, Jan Heinrich Robens, Thomas Nelius, Sean Kille, Philipp Dahlinger, Roland Thomaschke, Gerhard Neumann, Sven Matthiesen, Sören Hohmann, Andrea Kiesel:
Human-machine Symbiosis: A Multivariate Perspective for Physically Coupled Human-machine Systems. CoRR abs/2111.14681 (2021) - [i18]Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, Gerhard Neumann:
Specializing Versatile Skill Libraries using Local Mixture of Experts. CoRR abs/2112.04216 (2021) - 2020
- [j37]Oleg Arenz, Mingjun Zhong, Gerhard Neumann:
Trust-Region Variational Inference with Gaussian Mixture Models. J. Mach. Learn. Res. 21: 163:1-163:60 (2020) - [j36]Riccardo Polvara, Manuel Fernández-Carmona, Gerhard Neumann, Marc Hanheide:
Next-Best-Sense: A Multi-Criteria Robotic Exploration Strategy for RFID Tags Discovery. IEEE Robotics Autom. Lett. 5(3): 4477-4484 (2020) - [j35]Joni Pajarinen, Oleg Arenz, Jan Peters, Gerhard Neumann:
Probabilistic Approach to Physical Object Disentangling. IEEE Robotics Autom. Lett. 5(4): 5510-5517 (2020) - [j34]Riccardo Polvara, Massimiliano Patacchiola, Marc Hanheide, Gerhard Neumann:
Sim-to-Real Quadrotor Landing via Sequential Deep Q-Networks and Domain Randomization. Robotics 9(1): 8 (2020) - [j33]Jayant Singh, Aravinda Ramakrishnan Srinivasan, Gerhard Neumann, Ayse Küçükyilmaz:
Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master. IEEE Trans. Haptics 13(1): 246-252 (2020) - [j32]Firas Abi-Farraj, Claudio Pacchierotti, Oleg Arenz, Gerhard Neumann, Paolo Robuffo Giordano:
A Haptic Shared-Control Architecture for Guided Multi-Target Robotic Grasping. IEEE Trans. Haptics 13(2): 270-285 (2020) - [j31]Sebastián Gómez-González, Gerhard Neumann, Bernhard Schölkopf, Jan Peters:
Adaptation and Robust Learning of Probabilistic Movement Primitives. IEEE Trans. Robotics 36(2): 366-379 (2020) - [c80]Soran Parsa, Disha Kamale, Sariah Mghames, Kiyanoush Nazari, Tommaso Pardi, Aravinda Ramakrishnan Srinivasan, Gerhard Neumann, Marc Hanheide, Amir Ghalamzan E:
Haptic-guided shared control grasping: collision-free manipulation. CASE 2020: 1552-1557 - [c79]Vaisakh Shaj, Philipp Becker, Dieter Büchler, Harit Pandya, Niels van Duijkeren, C. James Taylor, Marc Hanheide, Gerhard Neumann:
Action-Conditional Recurrent Kalman Networks For Forward and Inverse Dynamics Learning. CoRL 2020: 765-781 - [c78]Philipp Becker, Oleg Arenz, Gerhard Neumann:
Expected Information Maximization: Using the I-Projection for Mixture Density Estimation. ICLR 2020 - [c77]Mohamed Sorour, Khaled Elgeneidy, Marc Hanheide, M. Abdalmjed, A. Srinivasan, Gerhard Neumann:
Enhancing Grasp Pose Computation in Gripper Workspace Spheres. ICRA 2020: 1539-1545 - [i17]Philipp Becker, Oleg Arenz, Gerhard Neumann:
Expected Information Maximization: Using the I-Projection for Mixture Density Estimation. CoRR abs/2001.08682 (2020) - [i16]Joni Pajarinen, Oleg Arenz, Jan Peters, Gerhard Neumann:
Probabilistic approach to physical object disentangling. CoRR abs/2002.11495 (2020) - [i15]Oleg Arenz, Gerhard Neumann:
Non-Adversarial Imitation Learning and its Connections to Adversarial Methods. CoRR abs/2008.03525 (2020) - [i14]R. B. Ashith Shyam, Zhou Hao, Umberto Montanaro, Gerhard Neumann:
Imitation Learning for Autonomous Trajectory Learning of Robot Arms in Space. CoRR abs/2008.04007 (2020) - [i13]Vaisakh Shaj, Philipp Becker, Dieter Buchler, Harit Pandya, Niels van Duijkeren, C. James Taylor, Marc Hanheide, Gerhard Neumann:
Action-Conditional Recurrent Kalman Networks For Forward and Inverse Dynamics Learning. CoRR abs/2010.10201 (2020)
2010 – 2019
- 2019
- [j30]Abbas Abdolmaleki, David Simões, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Contextual Direct Policy Search - With Regularized Covariance Matrix Estimation. J. Intell. Robotic Syst. 96(2): 141-157 (2019) - [j29]Maximilian Hüttenrauch, Adrian Sosic, Gerhard Neumann:
Deep Reinforcement Learning for Swarm Systems. J. Mach. Learn. Res. 20: 54:1-54:31 (2019) - [j28]Joni Pajarinen, Hong Linh Thai, Riad Akrour, Jan Peters, Gerhard Neumann:
Compatible natural gradient policy search. Mach. Learn. 108(8-9): 1443-1466 (2019) - [j27]Gregor H. W. Gebhardt, Andras Gabor Kupcsik, Gerhard Neumann:
The kernel Kalman rule - Efficient nonparametric inference by recursive least-squares and subspace projections. Mach. Learn. 108(12): 2113-2157 (2019) - [j26]Florian Brandherm, Jan Peters, Gerhard Neumann, Riad Akrour:
Learning Replanning Policies With Direct Policy Search. IEEE Robotics Autom. Lett. 4(2): 2196-2203 (2019) - [j25]Cheng Zhao, Li Sun, Zhi Yan, Gerhard Neumann, Tom Duckett, Rustam Stolkin:
Learning Kalman Network: A deep monocular visual odometry for on-road driving. Robotics Auton. Syst. 121 (2019) - [c76]Riad Akrour, Joni Pajarinen, Jan Peters, Gerhard Neumann:
Projections for Approximate Policy Iteration Algorithms. ICML 2019: 181-190 - [c75]Philipp Becker, Harit Pandya, Gregor H. W. Gebhardt, Cheng Zhao, C. James Taylor, Gerhard Neumann:
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces. ICML 2019: 544-552 - [c74]Mohamed Sorour, Khaled Elgeneidy, Aravinda Srinivasan, Marc Hanheide, Gerhard Neumann:
Grasping Unknown Objects Based on Gripper Workspace Spheres. IROS 2019: 1541-1547 - [c73]R. B. Ashith Shyam, Peter Lightbody, Gautham Das, Pengcheng Liu, Sebastián Gómez-González, Gerhard Neumann:
Improving Local Trajectory Optimisation using Probabilistic Movement Primitives. IROS 2019: 2666-2671 - [c72]Khaled Elgeneidy, Peter Lightbody, Simon Pearson, Gerhard Neumann:
Characterising 3D-printed Soft Fin Ray Robotic Fingers with Layer Jamming Capability for Delicate Grasping. RoboSoft 2019: 143-148 - [i12]Joni Pajarinen, Hong Linh Thai, Riad Akrour, Jan Peters, Gerhard Neumann:
Compatible Natural Gradient Policy Search. CoRR abs/1902.02823 (2019) - [i11]Philipp Becker, Harit Pandya, Gregor H. W. Gebhardt, Cheng Zhao, C. James Taylor, Gerhard Neumann:
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces. CoRR abs/1905.07357 (2019) - [i10]Oleg Arenz, Mingjun Zhong, Gerhard Neumann:
Trust-Region Variational Inference with Gaussian Mixture Models. CoRR abs/1907.04710 (2019) - 2018
- [j24]Alexandros Paraschos, Elmar Rueckert, Jan Peters, Gerhard Neumann:
Probabilistic movement primitives under unknown system dynamics. Adv. Robotics 32(6): 297-310 (2018) - [j23]Takayuki Osa, Jan Peters, Gerhard Neumann:
Hierarchical reinforcement learning of multiple grasping strategies with human instructions. Adv. Robotics 32(18): 955-968 (2018) - [j22]Alexandros Paraschos, Christian Daniel, Jan Peters, Gerhard Neumann:
Using probabilistic movement primitives in robotics. Auton. Robots 42(3): 529-551 (2018) - [j21]Khaled Elgeneidy, Gerhard Neumann, Michael R. Jackson, Niels Lohse:
Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators. Frontiers Robotics AI 5: 2 (2018) - [j20]Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, Jan Peters:
An Algorithmic Perspective on Imitation Learning. Found. Trends Robotics 7(1-2): 1-179 (2018) - [j19]Riad Akrour, Abbas Abdolmaleki, Hany Abdulsamad, Jan Peters, Gerhard Neumann:
Model-Free Trajectory-based Policy Optimization with Monotonic Improvement. J. Mach. Learn. Res. 19: 14:1-14:25 (2018) - [c71]Maximilian Hüttenrauch, Adrian Sosic, Gerhard Neumann:
Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning. ANTS Conference 2018: 71-83 - [c70]Oleg Arenz, Mingjun Zhong, Gerhard Neumann:
Efficient Gradient-Free Variational Inference using Policy Search. ICML 2018: 234-243 - [c69]Robert Pinsler, Riad Akrour, Takayuki Osa, Jan Peters, Gerhard Neumann:
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences. ICRA 2018: 596-601 - [c68]Dorothea Koert, Guilherme Maeda, Gerhard Neumann, Jan Peters:
Learning Coupled Forward-Inverse Models with Combined Prediction Errors. ICRA 2018: 2433-2439 - [c67]Gregor H. W. Gebhardt, Kevin Daun, Marius Schnaubelt, Gerhard Neumann:
Learning Robust Policies for Object Manipulation with Robot Swarms. ICRA 2018: 7688-7695 - [c66]Khaled Elgeneidy, Gerhard Neumann, Simon Pearson, Michael R. Jackson, Niels Lohse:
Contact Detection and Size Estimation Using a Modular Soft Gripper with Embedded Flex Sensors. IROS 2018: 498-503 - [c65]Riad Akrour, Filipe Veiga, Jan Peters, Gerhard Neumann:
Regularizing Reinforcement Learning with State Abstraction. IROS 2018: 534-539 - [c64]Pengcheng Liu, Gerhard Neumann, Qinbing Fu, Simon Pearson, Hongnian Yu:
Energy-Efficient Design and Control of a Vibro-Driven Robot. IROS 2018: 1464-1469 - [i9]Maximilian Hüttenrauch, Adrian Sosic, Gerhard Neumann:
Deep Reinforcement Learning for Swarm Systems. CoRR abs/1807.06613 (2018) - [i8]Patrick Jahnke, Emmanuel Stapf, Jonas Mieseler, Gerhard Neumann, Patrick Eugster:
Towards Fine Grained Network Flow Prediction. CoRR abs/1808.06453 (2018) - [i7]Sebastián Gómez-González, Gerhard Neumann, Bernhard Schölkopf, Jan Peters:
Adaptation and Robust Learning of Probabilistic Movement Primitives. CoRR abs/1808.10648 (2018) - [i6]Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, Jan Peters:
An Algorithmic Perspective on Imitation Learning. CoRR abs/1811.06711 (2018) - 2017
- [j18]Andras Gabor Kupcsik, Marc Peter Deisenroth, Jan Peters, Ai Poh Loh, Prahlad Vadakkepat, Gerhard Neumann:
Model-based contextual policy search for data-efficient generalization of robot skills. Artif. Intell. 247: 415-439 (2017) - [j17]Guilherme Maeda, Gerhard Neumann, Marco Ewerton, Rudolf Lioutikov, Oliver Kroemer, Jan Peters:
Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks. Auton. Robots 41(3): 593-612 (2017) - [j16]Rudolf Lioutikov, Gerhard Neumann, Guilherme Maeda, Jan Peters:
Learning movement primitive libraries through probabilistic segmentation. Int. J. Robotics Res. 36(8): 879-894 (2017) - [j15]Guilherme Maeda, Marco Ewerton, Gerhard Neumann, Rudolf Lioutikov, Jan Peters:
Phase estimation for fast action recognition and trajectory generation in human-robot collaboration. Int. J. Robotics Res. 36(13-14): 1579-1594 (2017) - [j14]Herke van Hoof, Gerhard Neumann, Jan Peters:
Non-parametric Policy Search with Limited Information Loss. J. Mach. Learn. Res. 18: 73:1-73:46 (2017) - [j13]Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz:
A Survey of Preference-Based Reinforcement Learning Methods. J. Mach. Learn. Res. 18: 136:1-136:46 (2017) - [j12]Takayuki Osa, Amir Masoud Ghalamzan Esfahani, Rustam Stolkin, Rudolf Lioutikov, Jan Peters, Gerhard Neumann:
Guiding Trajectory Optimization by Demonstrated Distributions. IEEE Robotics Autom. Lett. 2(2): 819-826 (2017) - [j11]Alexandros Paraschos, Rudolf Lioutikov, Jan Peters, Gerhard Neumann:
Probabilistic Prioritization of Movement Primitives. IEEE Robotics Autom. Lett. 2(4): 2294-2301 (2017) - [c63]Abbas Abdolmaleki, David Simões, Nuno Lau, Luís Paulo Reis, Bob Price, Gerhard Neumann:
Stochastic Search In Changing Situations. AAAI Workshops 2017 - [c62]Voot Tangkaratt, Herke van Hoof, Simone Parisi, Gerhard Neumann, Jan Peters, Masashi Sugiyama:
Policy Search with High-Dimensional Context Variables. AAAI 2017: 2632-2638 - [c61]Gregor H. W. Gebhardt, Andras Gabor Kupcsik, Gerhard Neumann:
The Kernel Kalman Rule - Efficient Nonparametric Inference with Recursive Least Squares. AAAI 2017: 3754-3760 - [c60]Hany Abdulsamad, Oleg Arenz, Jan Peters, Gerhard Neumann:
State-Regularized Policy Search for Linearized Dynamical Systems. ICAPS 2017: 419-424 - [c59]Gregor H. W. Gebhardt, Kevin Daun, Marius Schnaubelt, Alexander Hendrich, Daniel Kauth, Gerhard Neumann:
Learning to Assemble Objects with a Robot Swarm. AAMAS 2017: 1547-1549 - [c58]Abbas Abdolmaleki, Bob Price, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Deriving and improving CMA-ES with information geometric trust regions. GECCO 2017: 657-664 - [c57]Riad Akrour, Dmitry Sorokin, Jan Peters, Gerhard Neumann:
Local Bayesian Optimization of Motor Skills. ICML 2017: 41-50 - [c56]Firas Abi-Farraj, Takayuki Osa, Nicolo Pedemonte, Jan Peters, Gerhard Neumann, Paolo Robuffo Giordano:
A learning-based shared control architecture for interactive task execution. ICRA 2017: 329-335 - [c55]Alexander Gabriel, Riad Akrour, Jan Peters, Gerhard Neumann:
Empowered skills. ICRA 2017: 6435-6441 - [c54]Felix End, Riad Akrour, Jan Peters, Gerhard Neumann:
Layered direct policy search for learning hierarchical skills. ICRA 2017: 6442-6448 - [c53]Abbas Abdolmaleki, Bob Price, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Contextual Covariance Matrix Adaptation Evolutionary Strategies. IJCAI 2017: 1378-1385 - [c52]Joni Pajarinen, Ville Kyrki, Michael C. Koval, Siddhartha S. Srinivasa, Jan Peters, Gerhard Neumann:
Hybrid control trajectory optimization under uncertainty. IROS 2017: 5694-5701 - [i5]Joni Pajarinen, Ville Kyrki, Michael C. Koval, Siddhartha S. Srinivasa, Jan Peters, Gerhard Neumann:
Hybrid control trajectory optimization under uncertainty. CoRR abs/1702.04396 (2017) - [i4]Maximilian Hüttenrauch, Adrian Sosic, Gerhard Neumann:
Guided Deep Reinforcement Learning for Swarm Systems. CoRR abs/1709.06011 (2017) - [i3]Maximilian Hüttenrauch, Adrian Sosic, Gerhard Neumann:
Learning Complex Swarm Behaviors by Exploiting Local Communication Protocols with Deep Reinforcement Learning. CoRR abs/1709.07224 (2017) - 2016
- [j10]Abbas Abdolmaleki, Nuno Lau, Luís Paulo Reis, Jan Peters, Gerhard Neumann:
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller. J. Intell. Robotic Syst. 83(3-4): 393-408 (2016) - [j9]Christian Daniel, Gerhard Neumann, Oliver Kroemer, Jan Peters:
Hierarchical Relative Entropy Policy Search. J. Mach. Learn. Res. 17: 93:1-93:50 (2016) - [j8]Christian Daniel, Herke van Hoof, Jan Peters, Gerhard Neumann:
Probabilistic inference for determining options in reinforcement learning. Mach. Learn. 104(2-3): 337-357 (2016) - [c51]Christian Wirth, Johannes Fürnkranz, Gerhard Neumann:
Model-Free Preference-Based Reinforcement Learning. AAAI 2016: 2222-2228 - [c50]Abbas Abdolmaleki, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Contextual Stochastic Search. GECCO (Companion) 2016: 29-30 - [c49]Abbas Abdolmaleki, Rudolf Lioutikov, Nuno Lau, Luís Paulo Reis, Jan Peters, Gerhard Neumann:
Model-Based Relative Entropy Stochastic Search. GECCO (Companion) 2016: 153-154 - [c48]Sebastián Gómez-González, Gerhard Neumann, Bernhard Schölkopf, Jan Peters:
Using probabilistic movement primitives for striking movements. Humanoids 2016: 502-508 - [c47]Dorothea Koert, Guilherme Maeda, Rudolf Lioutikov, Gerhard Neumann, Jan Peters:
Demonstration based trajectory optimization for generalizable robot motions. Humanoids 2016: 515-522 - [c46]Abbas Abdolmaleki, David Simões, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Contextual Relative Entropy Policy Search with Covariance Matrix Adaptation. ICARSC 2016: 94-99 - [c45]Riad Akrour, Gerhard Neumann, Hany Abdulsamad, Abbas Abdolmaleki:
Model-Free Trajectory Optimization for Reinforcement Learning. ICML 2016: 2961-2970 - [c44]Marco Ewerton, Guilherme Maeda, Gerhard Neumann, Viktor Kisner, Gerrit Kollegger, Josef Wiemeyer, Jan Peters:
Movement primitives with multiple phase parameters. ICRA 2016: 201-206 - [c43]Valerio Modugno, Gerhard Neumann, Elmar Rueckert, Giuseppe Oriolo, Jan Peters, Serena Ivaldi:
Learning soft task priorities for control of redundant robots. ICRA 2016: 221-226 - [c42]Abbas Abdolmaleki, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Non-parametric contextual stochastic search. IROS 2016: 2643-2648 - [c41]Oleg Arenz, Hany Abdulsamad, Gerhard Neumann:
Optimal control and inverse optimal control by distribution matching. IROS 2016: 4046-4053 - [c40]Takayuki Osa, Jan Peters, Gerhard Neumann:
Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies. ISER 2016: 160-172 - [c39]Boris Belousov, Gerhard Neumann, Constantin A. Rothkopf, Jan Peters:
Catching heuristics are optimal control policies. NIPS 2016: 1426-1434 - [c38]Abbas Abdolmaleki, David Simões, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Learning a Humanoid Kick with Controlled Distance. RoboCup 2016: 45-57 - [i2]Riad Akrour, Abbas Abdolmaleki, Hany Abdulsamad, Gerhard Neumann:
Model-free Trajectory Optimization for Reinforcement Learning. CoRR abs/1606.09197 (2016) - [i1]Voot Tangkaratt, Herke van Hoof, Simone Parisi, Gerhard Neumann, Jan Peters, Masashi Sugiyama:
Policy Search with High-Dimensional Context Variables. CoRR abs/1611.03231 (2016) - 2015
- [c37]Christoph Dann, Gerhard Neumann, Jan Peters:
Policy Evaluation with Temporal Differences: A Survey and Comparison (Extended Abstract). ICAPS 2015: 359-360 - [c36]Herke van Hoof, Jan Peters, Gerhard Neumann:
Learning of Non-Parametric Control Policies with High-Dimensional State Features. AISTATS 2015 - [c35]Okan Koc, Guilherme Maeda, Gerhard Neumann, Jan Peters:
Optimizing robot striking movement primitives with Iterative Learning Control. Humanoids 2015: 80-87 - [c34]Herke van Hoof, Tucker Hermans, Gerhard Neumann, Jan Peters:
Learning robot in-hand manipulation with tactile features. Humanoids 2015: 121-127 - [c33]Abbas Abdolmaleki, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Regularized covariance estimation for weighted maximum likelihood policy search methods. Humanoids 2015: 154-159 - [c32]Rudolf Lioutikov, Gerhard Neumann, Guilherme Maeda, Jan Peters:
Probabilistic segmentation applied to an assembly task. Humanoids 2015: 533-540 - [c31]Abbas Abdolmaleki, Nuno Lau, Luís Paulo Reis, Jan Peters, Gerhard Neumann:
Contextual Policy Search for Generalizing a Parameterized Biped Walking Controller. ICARSC 2015: 17-22 - [c30]Oliver Kroemer, Christian Daniel, Gerhard Neumann, Herke van Hoof, Jan Peters:
Towards learning hierarchical skills for multi-phase manipulation tasks. ICRA 2015: 1503-1510 - [c29]Elmar Rueckert, Jan Mundo, Alexandros Paraschos, Jan Peters, Gerhard Neumann:
Extracting low-dimensional control variables for movement primitives. ICRA 2015: 1511-1518 - [c28]Marco Ewerton, Gerhard Neumann, Rudolf Lioutikov, Heni Ben Amor, Jan Peters, Guilherme Maeda:
Learning multiple collaborative tasks with a mixture of Interaction Primitives. ICRA 2015: 1535-1542 - [c27]Marco Ewerton, Guilherme Maeda, Jan Peters, Gerhard Neumann:
Learning motor skills from partially observed movements executed at different speeds. IROS 2015: 456-463 - [c26]Alexandros Paraschos, Elmar Rueckert, Jan Peters, Gerhard Neumann:
Model-free Probabilistic Movement Primitives for physical interaction. IROS 2015: 2860-2866 - [c25]Guilherme Maeda, Gerhard Neumann, Marco Ewerton, Rudolf Lioutikov, Jan Peters:
A Probabilistic Framework for Semi-autonomous Robots Based on Interaction Primitives with Phase Estimation. ISRR (2) 2015: 253-268 - [c24]Abbas Abdolmaleki, Rudolf Lioutikov, Jan Peters, Nuno Lau, Luís Paulo Reis, Gerhard Neumann:
Model-Based Relative Entropy Stochastic Search. NIPS 2015: 3537-3545 - 2014
- [j7]Gerhard Neumann, Christian Daniel, Alexandros Paraschos, Andras Gabor Kupcsik, Jan Peters:
Learning modular policies for robotics. Frontiers Comput. Neurosci. 8: 62 (2014) - [j6]Rudolf Lioutikov, Alexandros Paraschos, Jan Peters, Gerhard Neumann:
Generalizing Movements with Information-Theoretic Stochastic Optimal Control. J. Aerosp. Inf. Syst. 11(9): 579-595 (2014) - [j5]Christoph Dann, Gerhard Neumann, Jan Peters:
Policy evaluation with temporal differences: a survey and comparison. J. Mach. Learn. Res. 15(1): 809-883 (2014) - [c23]Elmar Rueckert, Max Mindt, Jan Peters, Gerhard Neumann:
Robust policy updates for stochastic optimal control. Humanoids 2014: 388-393 - [c22]Guilherme Maeda, Marco Ewerton, Rudolf Lioutikov, Heni Ben Amor, Jan Peters, Gerhard Neumann:
Learning interaction for collaborative tasks with probabilistic movement primitives. Humanoids 2014: 527-534 - [c21]Adria Colome, Gerhard Neumann, Jan Peters, Carme Torras:
Dimensionality reduction for probabilistic movement primitives. Humanoids 2014: 794-800 - [c20]Abbas Abdolmaleki, Nima Shafii, Luís Paulo Reis, Nuno Lau, Jan Peters, Gerhard Neumann:
Omnidirectional Walking with a Compliant Inverted Pendulum Model. IBERAMIA 2014: 481-493 - [c19]Heni Ben Amor, Gerhard Neumann, Sanket Kamthe, Oliver Kroemer, Jan Peters:
Interaction primitives for human-robot cooperation tasks. ICRA 2014: 2831-2837 - [c18]Rudolf Lioutikov, Alexandros Paraschos, Jan Peters, Gerhard Neumann:
Sample-based informationl-theoretic stochastic optimal control. ICRA 2014: 3896-3902 - [c17]Oliver Kroemer, Herke van Hoof, Gerhard Neumann, Jan Peters:
Learning to predict phases of manipulation tasks as hidden states. ICRA 2014: 4009-4014 - [c16]Kevin Sebastian Luck, Gerhard Neumann, Erik Berger, Jan Peters, Heni Ben Amor:
Latent space policy search for robotics. IROS 2014: 1434-1440 - [c15]Vicenç Gómez, Hilbert J. Kappen, Jan Peters, Gerhard Neumann:
Policy Search for Path Integral Control. ECML/PKDD (1) 2014: 482-497 - 2013
- [j4]Elmar A. Rückert, Gerhard Neumann:
Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation. Artif. Life 19(1): 115-131 (2013) - [j3]Marc Peter Deisenroth, Gerhard Neumann, Jan Peters:
A Survey on Policy Search for Robotics. Found. Trends Robotics 2(1-2): 1-142 (2013) - [c14]Andras Gabor Kupcsik, Marc Peter Deisenroth, Jan Peters, Gerhard Neumann:
Data-Efficient Generalization of Robot Skills with Contextual Policy Search. AAAI 2013: 1401-1407 - [c13]Alexandros Paraschos, Gerhard Neumann, Jan Peters:
A probabilistic approach to robot trajectory generation. Humanoids 2013: 477-483 - [c12]Christian Daniel, Gerhard Neumann, Oliver Kroemer, Jan Peters:
Learning sequential motor tasks. ICRA 2013: 2626-2632 - [c11]Christian Daniel, Gerhard Neumann, Jan Peters:
Autonomous reinforcement learning with hierarchical REPS. IJCNN 2013: 1-8 - [c10]Alexandros Paraschos, Christian Daniel, Jan Peters, Gerhard Neumann:
Probabilistic Movement Primitives. NIPS 2013: 2616-2624 - [c9]Jan Peters, Jens Kober, Katharina Mülling, Oliver Krömer, Gerhard Neumann:
Towards Robot Skill Learning: From Simple Skills to Table Tennis. ECML/PKDD (3) 2013: 627-631 - 2012
- [j2]Elmar A. Rückert, Gerhard Neumann, Marc Toussaint, Wolfgang Maass:
Learned graphical models for probabilistic planning provide a new class of movement primitives. Frontiers Comput. Neurosci. 6: 97 (2012) - [c8]Heni Ben Amor, Oliver Kroemer, Ulrich Hillenbrand, Gerhard Neumann, Jan Peters:
Generalization of human grasping for multi-fingered robot hands. IROS 2012: 2043-2050 - [c7]Christian Daniel, Gerhard Neumann, Jan Peters:
Learning concurrent motor skills in versatile solution spaces. IROS 2012: 3591-3597 - [c6]Christian Daniel, Gerhard Neumann, Jan Peters:
Hierarchical Relative Entropy Policy Search. AISTATS 2012: 273-281 - 2011
- [j1]Helmut Hauser, Gerhard Neumann, Auke Jan Ijspeert, Wolfgang Maass:
Biologically inspired kinematic synergies enable linear balance control of a humanoid robot. Biol. Cybern. 104(4-5): 235-249 (2011) - [c5]Gerhard Neumann:
Variational Inference for Policy Search in changing situations. ICML 2011: 817-824
2000 – 2009
- 2009
- [c4]Gerhard Neumann, Wolfgang Maass, Jan Peters:
Learning complex motions by sequencing simpler motion templates. ICML 2009: 753-760 - 2008
- [c3]Gerhard Neumann, Jan Peters:
Fitted Q-iteration by Advantage Weighted Regression. NIPS 2008: 1177-1184 - 2007
- [c2]Gerhard Neumann, Michael Pfeiffer, Wolfgang Maass:
Efficient Continuous-Time Reinforcement Learning with Adaptive State Graphs. ECML 2007: 250-261 - [c1]Helmut Hauser, Gerhard Neumann, Auke Jan Ijspeert, Wolfgang Maass:
Biologically inspired kinematic synergies provide a new paradigm for balance control of humanoid robots. Humanoids 2007: 73-80
Coauthor Index
aka: Jan R. Peters
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-02-07 23:49 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint