Solutions of (2+1)-D & (3+1)-D Burgers Equations by New Laplace Variational Iteration Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. New LVIM for Solving (2+1)-D Burgers’s Equation
2.2. The Convergence of LVIM for (2+1)-D Partial Differential Equations
2.3. New LVIM for Solving (3+1)-D Burgers’s Equation
2.4. The Convergence of LVIM for (3+1)-D Partial Differential Equations
3. Numerical Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hendi, F.A.; Kashkari, B.S.; Alderremy, A.A. The variational Homotopy Perturbation method for solving ((n × n) + 1). Dimensional Burgers’ equations. J. Appl. Math. 2016, 2016, 4146323. [Google Scholar] [CrossRef] [Green Version]
- Suleman, M.; Wu, Q.; Abbas, G. Approximate analytic solution of (2 + 1) dimensional coupled differential Burger’s equation using Elzaki Homotopy Perturbation Method. Alex. Eng. J. 2016, 55, 1817–1826. [Google Scholar] [CrossRef] [Green Version]
- Kutluay, S.; Bahadir, A.; Özdeş, A. Numerical solution of one dimensional Burgers’ equation by explicit and exact-explicit finite difference methods. J. Comput. Appl. Math. 1999, 103, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Kutluay, S.; Esen, A.; Dag, I. Numerical solutions of the Burgers’ equations by the least squares quadratic B spline finite element method. J. Comput. Appl. Math. 2004, 167, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.; Verma, L.; Verma, A.K. On a finite difference scheme for Burgers’ equations. Appl. Math. Comput. 2009, 215, 2206–2214. [Google Scholar] [CrossRef]
- Aksan, E.N. A numerical solution of Burgers’ equation by finite element method constructed on the method of discretization in time. Appl. Math. Comput. 2005, 170, 895–904. [Google Scholar] [CrossRef]
- Abdou, M.A.; Soliman, A.A. Variational iteration method for solving Burgers’ and coupled Burgers’ equations. J. Comput. Appl. Math. 1996, 181, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Mittal, R.; Singhal, P. Numerical solution of Burgers’ equation. Commun. Num. Methods Eng. 1993, 9, 397–406. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Darvishi, M.T. A numerical solution of Burgers’ equation by modified Adomian Decomposition method. Appl. Math. Comput. 2005, 163, 1265–1272. [Google Scholar]
- Öziş, T.; Aksan, E.N.; Özdeş, A. A finite element approach for solution of Burgers’ equation. Appl. Math. Comput. 2003, 139, 417–428. [Google Scholar] [CrossRef]
- Aminikhah, H. A new efficient method for solving two-dimensional Burgers’ equation. ISRN Comput. Math. 2012, 2012, 603280. [Google Scholar] [CrossRef] [Green Version]
- Hopf, E. The partial differential equation ut + uux = µuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method for delay differential equations. Commun. Nonlinear Sci. Numer. Simul. 1997, 2, 235–236. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method-a kind of non-linear analytical technique: Some examples. Int. J. Nonlinear Mech. 1999, 34, 699–708. [Google Scholar] [CrossRef]
- Hammouch, Z.; Mekkaoui, T. A Laplace-variational iteration method for solving the homogeneous Smoluchowski coagulation equation. Appl. Math. Sci. 2012, 6, 879–886. [Google Scholar]
- Arife, A.S.; Yildirim, A. New modified variational iteration transform method (MVITM) for solving eighth-order boundary value problems in one step. World Appl. Sci. J. 2011, 13, 2186–2190. [Google Scholar]
- Hesameddini, E.; Latifizadeh, H. Reconstruction of variational iteration algorithms using the Laplace transform. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 1377–1382. [Google Scholar] [CrossRef]
- Wu, G.C. Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations. Therm. Sci. 2012, 16, 1257–1261. [Google Scholar] [CrossRef]
- Martinez, H.Y.; Gomez-Aguilar, J.F. Laplace variational iteration method for modified fractional derivatives with non-singular kernel. J. Appl. Comput. Mech. 2020, 6, 684–698. [Google Scholar]
- Elzaki, T.M. Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method. In Differential Equations: Theory and Current Research; IntechOpen: London, UK, 2018. [Google Scholar]
- Singh, G.; Singh, I. Laplace variational iterative method for solving 3D Schrodinger equations. J. Math. Comput. Sci. 2020, 10, 2015–2024. [Google Scholar]
- Singh, G.; Singh, I. Laplace variational iterative method for solving Two-dimensional Telegraph equations. J. Math. Comput. Sci. 2020, 10, 2943–2954. [Google Scholar]
- Singh, G.; Singh, I. New Hybrid Technique for solving Three-dimensional Telegraph equations. Adv. Differ. Equ. Control. Process. 2021, 24, 153–165. [Google Scholar] [CrossRef]
- Singh, G.; Singh, I. The exact solution of 3D Diffusion and wave equations using Laplace variational iterative method. Int. J. Adv. Res. Eng. Technol. 2020, 11, 36–43. [Google Scholar]
- Aksan, E.N. Quadratic B-spline finite element method for numerical solution of the Burgers’ equation. Appl. Math. Comput. 2006, 174, 884–896. [Google Scholar] [CrossRef]
- Kutluay, S.; Esen, A. A lumped galerkin method for solving the burgers equation. Int. J. Comput. Math. 2004, 81, 1433–1444. [Google Scholar] [CrossRef]
- Sirendaoreji. Exact solutions of the two-dimensional Burgers equation. J. Phys. A 1999, 32, 6897–6900. [Google Scholar] [CrossRef]
- Sharma, K.D.; Kumar, R.; Kakkar, M.; Ghangas, S. Three dimensional waves propagation in thermos-viscoelastic medium with two temperature and void. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1033, 012059. [Google Scholar] [CrossRef]
- Singh, V.; Saluja, N.; Singh, C.; Malhotra, R. Computational and Experimental study of microwave processing of susceptor with multiple topologies of launcher waveguide. AIP Conf. Proc. 2022, 2357, 040019. [Google Scholar]
- Khan, M. A novel solution technique for two-dimensional Burgers equation. Alex. Eng. J. 2014, 53, 485–490. [Google Scholar] [CrossRef] [Green Version]
Exact | LVIM | VHPM [1] | |
---|---|---|---|
0.01 | 0.40404040 | 0.40404040 | 0.40404040 |
0.02 | 0.40816326 | 0.40816324 | 0.40816320 |
0.03 | 0.41237113 | 0.41237101 | 0.41237080 |
0.04 | 0.41666666 | 0.41666629 | 0.41666560 |
0.05 | 0.42105263 | 0.42105170 | 0.42105000 |
0.06 | 0.42553191 | 0.42552996 | 0.42552640 |
0.07 | 0.43010752 | 0.43010383 | 0.43009720 |
0.08 | 0.43478260 | 0.43477617 | 0.43476480 |
0.09 | 0.43956043 | 0.43954990 | 0.43953160 |
0.10 | 0.44444444 | 0.44442804 | 0.44440000 |
[1] | ||
---|---|---|
0.01 | 1.3604 × 10−9 | 4.0404 × 10−9 |
0.02 | 2.2210 × 10−8 | 6.5306 × 10−8 |
0.03 | 1.1475 × 10−7 | 3.3402 × 10−7 |
0.04 | 3.7016 × 10−7 | 1.0667 × 10−6 |
0.05 | 9.2255 × 10−7 | 2.6316 × 10−6 |
0.06 | 1.9531 × 10−6 | 5.5149 × 10−6 |
0.07 | 3.6948 × 10−6 | 1.0327 × 10−5 |
0.08 | 6.4373 × 10−6 | 1.7809 × 10−5 |
0.09 | 1.0532 × 10−5 | 2.8840 × 10−5 |
0.10 | 1.6399 × 10−5 | 4.4444 × 10−5 |
Exact Solutions | [1] | ||
---|---|---|---|
0.2 | 0.50000000 | 3.2774 × 10−4 | 8.0000 × 10−4 |
0.3 | 0.57142857 | 2.1108 × 10−3 | 4.6286 × 10−3 |
0.4 | 0.66666666 | 8.6822 × 10−3 | 1.7067 × 10−2 |
0.5 | 0.80000000 | 2.8423 × 10−2 | 5.0000 × 10−2 |
0.6 | 1.00000000 | 8.2421 × 10−2 | 1.2960 × 10−1 |
Exact | NLVIM | VHPM [1] | |
---|---|---|---|
0.01 | 0.90909090 | 0.90909090 | 0.90909090 |
0.02 | 0.91836734 | 0.91836729 | 0.91836720 |
0.03 | 0.92783505 | 0.92783479 | 0.92783430 |
0.04 | 0.93750000 | 0.93749916 | 0.93749760 |
0.05 | 0.94736842 | 0.94736634 | 0.94736250 |
0.06 | 0.95744680 | 0.95744241 | 0.95743440 |
0.07 | 0.96774193 | 0.96773362 | 0.96771870 |
0.08 | 0.97826086 | 0.97824638 | 0.97822080 |
0.09 | 0.98901098 | 0.98898729 | 0.98894610 |
0.10 | 1.00000000 | 0.99996310 | 0.99990000 |
[1] | ||
---|---|---|
0.01 | 3.0608 × 10−9 | 9.0909 × 10−9 |
0.02 | 4.9972 × 10−8 | 1.4694 × 10−7 |
0.03 | 2.5818 × 10−7 | 7.5155 × 10−7 |
0.04 | 8.3287 × 10−7 | 2.4000 × 10−6 |
0.05 | 2.0757 × 10−6 | 5.9211 × 10−6 |
0.06 | 4.3945 × 10−6 | 1.2409 × 10−5 |
0.07 | 8.3134 × 10−6 | 2.3235 × 10−5 |
0.08 | 1.4484 × 10−5 | 4.0070 × 10−5 |
0.09 | 2.3698 × 10−5 | 6.4889 × 10−5 |
0.10 | 3.6899 × 10−5 | 1.0000 × 10−4 |
Exact Solutions | [1] | ||
---|---|---|---|
0.2 | 1.12500000 | 7.3742 × 10−4 | 1.8000 × 10−3 |
0.3 | 1.28571428 | 4.7493 × 10−3 | 1.0414 × 10−2 |
0.4 | 1.50000000 | 1.9535 × 10−2 | 3.8400 × 10−2 |
0.5 | 1.80000000 | 6.3951 × 10−2 | 1.1250 × 10−1 |
0.6 | 2.25000000 | 1.8545 × 10−1 | 2.9160 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, G.; Singh, I.; AlDerea, A.M.; Alanzi, A.M.; Khalifa, H.A.E.-W. Solutions of (2+1)-D & (3+1)-D Burgers Equations by New Laplace Variational Iteration Technique. Axioms 2023, 12, 647. https://doi.org/10.3390/axioms12070647
Singh G, Singh I, AlDerea AM, Alanzi AM, Khalifa HAE-W. Solutions of (2+1)-D & (3+1)-D Burgers Equations by New Laplace Variational Iteration Technique. Axioms. 2023; 12(7):647. https://doi.org/10.3390/axioms12070647
Chicago/Turabian StyleSingh, Gurpreet, Inderdeep Singh, Afrah M. AlDerea, Agaeb Mahal Alanzi, and Hamiden Abd El-Wahed Khalifa. 2023. "Solutions of (2+1)-D & (3+1)-D Burgers Equations by New Laplace Variational Iteration Technique" Axioms 12, no. 7: 647. https://doi.org/10.3390/axioms12070647
APA StyleSingh, G., Singh, I., AlDerea, A. M., Alanzi, A. M., & Khalifa, H. A. E. -W. (2023). Solutions of (2+1)-D & (3+1)-D Burgers Equations by New Laplace Variational Iteration Technique. Axioms, 12(7), 647. https://doi.org/10.3390/axioms12070647