Reconstruction and Efficient Visualization of Heterogeneous 3D City Models
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Study Area
3.2. Overview of the Methodology
4. Model Implementation Results
4.1. Semi-Automatic Model Generation of Existing 3D City Model in LoD2
4.2. Design and Model Generation of the Future Smart City Model in LoD3
5. High-Performance Visualization Results
5.1. Web-Based Visualization Using CesiumJS
5.1.1. High-Resolution Terrain Visualization
5.1.2. Basemap Generation Using True Orthophotos
5.1.3. 3D City Model Visualization with 3D Tiles
5.2. Exploring Smart Cities with Virtual Reality in Unity Game Engine
6. Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision. 2019. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 5 May 2020).
- United Nations Sustainable Development Goal 11. Available online: https://sustainabledevelopment.un.org/sdg11 (accessed on 5 May 2020).
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Nam, T.; Pardo, T.A.; Scholl, H.J.; Walker, S. Building understanding of smart city initiatives. In Proceedings of the International Conference on Electronic Government, Kristiansand, Norway, 3–6 September 2012; pp. 40–53. [Google Scholar]
- Fernandez-Anez, V.; Fernández-Güell, J.M.; Giffinger, R. Smart City implementation and discourses: An integrated conceptual model. The case of Vienna. Cities 2018, 78, 4–16. [Google Scholar] [CrossRef]
- Aliaga, D.G. Integrating urban simulation and visualization. In Digital Urban Modeling and Simulation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 262–276. [Google Scholar]
- Schrotter, G.; Hürzeler, C. The digital twin of the city of Zurich for urban planning. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ledoux, H.; Ohori, K.A.; Kumar, K.; Dukai, B.; Labetski, A.; Vitalis, S. CityJSON: A compact and easy-to-use encoding of the CityGML data model. Open Geospat. Data Softw. Stand. 2019, 4, 4. [Google Scholar] [CrossRef]
- Kutzner, T.; Chaturvedi, K.; Kolbe, T.H. CityGML 3.0: New functions open up new applications. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Stadler, A.; Kolbe, T.H. Spatio-Semantic coherence in the integration of 3D city models. In Proceedings of the 5th International ISPRS Symposium on Spatial Data Quality ISSDQ 2007, Enschede, The Netherlands, 13–15 June 2007. [Google Scholar]
- Döllner, J.; Kolbe, T.H.; Liecke, F.; Sgouros, T.; Teichmann, K. The virtual 3d city model of berlin-managing, integrating, and communicating complex urban information. In Proceedings of the 25th International Symposium on Urban Data Management UDMS 2006, Aalborg, Denmark, 15–17 May 2006. [Google Scholar]
- Wagner, D.; Wewetzer, M.; Bogdahn, J.; Alam, N.; Pries, M.; Coors, V. Geometric-Semantical consistency validation of CityGML models. In Progress and New Trends in 3D Geoinformation Sciences; Springer: Berlin/Heidelberg, Germany, 2013; pp. 171–192. [Google Scholar]
- Ujang, U.; Anton, F.; Azri, S.; Rahman, A.A.; Mioc, D. 3D hilbert space filling curves in 3D city modeling for faster spatial queries. Int. J. 3 D Inf. Model. (IJ3DIM) 2014, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zlatanova, S.; Van Oosterom, P.; Verbree, E. 3D technology for improving disaster management: Geo-DBMS and positioning. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Jobst, M.; Germanchis, T. The employment of 3D in cartography—An overview. In Multimedia Cartography; Springer: Berlin/Heidelberg, Germany, 2007; pp. 217–228. [Google Scholar]
- Ministry of Environment and Urbanization. Bizimsehir Project. Available online: http://www.bizimsehir.org/ (accessed on 5 May 2020).
- Intergeo-Simplified Urban Planning Thanks to 3D Visualisation. Available online: https://www.intergeo.de/intergeo-en/newsroom/news/Simplified-urban-planning-thanks-to-3D-visualisation.php (accessed on 24 June 2020).
- UVM Systems 3D City Model. Available online: https://www.uvmsystems.com/index.php/en/projects/proj-city (accessed on 24 June 2020).
- Noardo, F.; Arroyo Ohori, K.; Biljecki, F.; Krijnen, T.; Ellul, C.; Harrie, L.; Stoter, J. GeoBIM benchmark 2019: Design and initial results. In Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives; International Society of Photogrammetry and Remote Sensing (ISPRS): Hannover, Germany, 2019; pp. 1339–1346. [Google Scholar] [CrossRef] [Green Version]
- Noardo, F.; Biljecki, F.; Agugiaro, G.; Arroyo Ohori, K.; Ellul, C.; Harrie, L.; Stoter, J. GeoBIM benchmark 2019: Intermediate results. In Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives; International Society of Photogrammetry and Remote Sensing (ISPRS): Hannover, Germany, 2019; pp. 47–52. [Google Scholar] [CrossRef] [Green Version]
- OGC City Geography Markup Language (CityGML) Encoding Standard. Available online: https://www.ogc.org/standards/citygml (accessed on 5 May 2020).
- Zhang, X.; Zhu, Q.; Wang, J. 3D city models based spatial analysis to urban design. Geogr. Inf. Sci. 2004, 10, 82–86. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Wright, G.; Cheng, J.C.; Li, X.; Liu, R. A state-of-the-art review on the integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int. J. Geo Inf. 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Herman, L.; Řezník, T. Web 3D visualization of noise mapping for extended INSPIRE buildings model. In Proceedings of the International Symposium on Environmental Software Systems, Neusiedl am See, Austria, 9–11 October 2013. [Google Scholar]
- Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R. 3D web visualization of huge CityGML models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40. [Google Scholar] [CrossRef] [Green Version]
- Goetz, M.; Zipf, A. Towards defining a framework for the automatic derivation of 3D CityGML models from volunteered geographic information. Int. J. 3 D Inf. Model. (IJ3DIM) 2012, 1, 1–16. [Google Scholar] [CrossRef]
- Kaden, R.; Kolbe, T.H. Simulation-based total energy demand estimation of buildings using semantic 3D city models. Int. J. 3 D Inf. Model. (IJ3DIM) 2014, 3, 35–53. [Google Scholar] [CrossRef]
- Rossmann, J.; Hoppen, M.; Bücken, A. GML-based data management and semantic world modelling for a 4D forest simulation and information system. In Geospatial Intelligence: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 423–442. [Google Scholar]
- Portalés, C.; Lerma, J.L.; Navarro, S. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments. ISPRS J. Photogramm. Remote Sens. 2010, 65, 134–142. [Google Scholar] [CrossRef]
- Rau, J.-Y.; Cheng, C.-K. A cost-effective strategy for multi-scale photo-realistic building modeling and web-based 3-D GIS applications in real estate. Comput. Environ. Urban Syst. 2013, 38, 35–44. [Google Scholar] [CrossRef]
- Isikdag, U.; Sahin, K. Web based 3D visualisation of time-varying air quality information. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Kemec, S.; Duzgun, S.; Zlatanova, S.; Dilmen, D.; Yalciner, A. Selecting 3D urban visualisation models for disaster management: Fethiye tsunami inundation case. In Proceedings of the 3rd International Conference on Cartography and GIS, Nessebar, Bulgaria, 15–20 June 2010. [Google Scholar]
- Tezel, D.; Buyukdemircioglu, M.; Kocaman, S. Accurate assessment of protected area boundaries for land use planning using 3D GIS. Geocarto Int. 2019, 1–14. [Google Scholar] [CrossRef]
- Manferdini, A.; Remondino, F. A review of reality-based 3D model generation, segmentation and web-based visualization methods. Int. J. Herit. Digit. Era 2012, 1, 103–123. [Google Scholar] [CrossRef]
- Buyukdemircioglu, M.; Kocaman, S. A 3D campus application based on city models and WebGL. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018. [Google Scholar] [CrossRef] [Green Version]
- Buyuksalih, G.; Baskaraca, P.; Bayburt, S.; Buyuksalih, I.; Rahman, A.A. 3D city modelling of Istanbul based on lidar data and panoramic images–issues and challenges. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42. [Google Scholar] [CrossRef] [Green Version]
- Buyukdemircioglu, M.; Kocaman, S.; Isikdag, U. Semi-automatic 3D city model generation from large-format aerial images. ISPRS Int. J. Geo Inf. 2018, 7, 339. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Lee, J. Improving accuracy of automated 3-D building models for smart cities. Int. J. Digit. Earth 2019, 12, 209–227. [Google Scholar] [CrossRef]
- Kocaman, S.; Zhang, L.; Gruen, A.; Poli, D. 3D city modeling from high-resolution satellite images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36. [Google Scholar] [CrossRef]
- Leotta, M.J.; Long, C.; Jacquet, B.; Zins, M.; Lipsa, D.; Shan, J.; Xu, B.; Li, Z.; Zhang, X.; Chang, S.-F. Urban semantic 3D reconstruction from multiview satellite imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Haala, N.; Rothermel, M.; Cavegn, S. Extracting 3D urban models from oblique aerial images. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [Google Scholar]
- Feifei, X.; Zongjian, L.; Dezhu, G.; Hua, L. Study on construction of 3D building based on UAV images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, B1. [Google Scholar]
- Yi, C.; Zhang, Y.; Wu, Q.; Xu, Y.; Remil, O.; Wei, M.; Wang, J. Urban building reconstruction from raw LiDAR point data. Comput. Aided Des. 2017, 93, 1–14. [Google Scholar] [CrossRef]
- Zhu, L.; Hyyppä, J.; Kukko, A.; Kaartinen, H.; Chen, R. Photorealistic building reconstruction from mobile laser scanning data. Remote Sens. 2011, 3, 1406–1426. [Google Scholar] [CrossRef] [Green Version]
- Gruen, A.; Huang, X.; Qin, R.; Du, T.; Fang, W.; Boavida, J.; Oliveira, A. Joint processing of UAV imagery and terrestrial mobile mapping system data for very high resolution city modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Frueh, C.; Zakhor, A. Constructing 3D city models by merging ground-based and airborne views. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; pp. 2–562. [Google Scholar] [CrossRef] [Green Version]
- Ulm, K. Improved 3D city modeling with CyberCity-Modeler (CC-Modeler) using aerial-satellite imagery and laserscanner data. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2003, 34, W10. [Google Scholar]
- Bagheri, H.; Schmitt, M.; Zhu, X. Fusion of multi-sensor-derived heights and OSM-derived building footprints for urban 3D reconstruction. ISPRS Int. J. Geo Inf. 2019, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Parish, Y.I.; Müller, P. Procedural modeling of cities. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; pp. 301–308. [Google Scholar]
- Müller, P.; Wonka, P.; Haegler, S.; Ulmer, A.; Van Gool, L. Procedural modeling of buildings. In ACM SIGGRAPH 2006 Papers; ACM SIGGRAPH: Boston, MA, USA, 2006; pp. 614–623. [Google Scholar]
- Wichmann, A.; Agoub, A.; Kada, M. ROOFN3D: Deep learning training data for 3D building reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42. [Google Scholar] [CrossRef] [Green Version]
- Hensel, S.; Goebbels, S.; Kada, M. Facade reconstruction for textured Lod2 Citygml models based on deep learning and mixed integer linear programming. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Bittner, K.; d’Angelo, P.; Körner, M.; Reinartz, P. Dsm-to-lod2: Spaceborne stereo digital surface model refinement. Remote Sens. 2018, 10, 1926. [Google Scholar] [CrossRef] [Green Version]
- Kraak, M.-J. Geovisualization illustrated. ISPRS J. Photogramm. Remote Sens. 2003, 57, 390–399. [Google Scholar] [CrossRef]
- Biljecki, F.; Stoter, J.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D city models: State of the art review. ISPRS Int. J. Geo Inf. 2015, 4, 2842–2889. [Google Scholar] [CrossRef] [Green Version]
- Neuville, R.; Pouliot, J.; Poux, F.; De Rudder, L.; Billen, R. A formalized 3D geovisualization illustrated to selectivity purpose of virtual 3D city model. ISPRS Int. J. Geo Inf. 2018, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Auer, M.; Zipf, A. 3D WebGIS: From visualization to analysis. An efficient browser-based 3D line-of-sight analysis. ISPRS Int. J. Geo Inf. 2018, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Wendel, J.; Murshed, S.M.; Sriramulu, A.; Nichersu, A. Development of a Web-browser based interface for 3D data—A case study of a plug-in free approach for visualizing energy modelling results. In Progress in Cartography; Springer: Cham, Switzerland, 2016; pp. 185–205. [Google Scholar]
- Semmo, A.; Trapp, M.; Jobst, M.; Döllner, J. Cartography-oriented design of 3D geospatial information visualization–overview and techniques. Cartogr. J. 2015, 52, 95–106. [Google Scholar] [CrossRef]
- Malinverni, E.; Tassetti, A. GIS-based smart cartography using 3D modeling. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, the ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, Istanbul, Turkey, 27–29 November 2013; p. W2. [Google Scholar] [CrossRef] [Green Version]
- Herman, L.; Řeznik, T. 3D Web visualization of environmental information-integration of heterogeneous data sources when providing navigation and interaction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40. [Google Scholar] [CrossRef] [Green Version]
- WebGL Earth—Open Source 3D Digital Globe. Available online: https://www.khronos.org/webgl/ (accessed on 5 May 2020).
- CesiumJS—Geospatial 3D Mapping and Virtual Globe Platform. Available online: https://cesiumjs.org/ (accessed on 5 May 2020).
- Three.js—JavaScript 3D Library. Available online: https://threejs.org/ (accessed on 5 May 2020).
- Unity Game Engine. Available online: https://unity.com/ (accessed on 5 May 2020).
- Blut, C.; Blut, T.; Blankenbach, J. CityGML goes mobile: Application of large 3D CityGML models on smartphones. Int. J. Digit. Earth 2019, 12, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Buyuksalih, I.; Bayburt, S.; Buyuksalih, G.; Baskaraca, A.; Karim, H.; Rahman, A.A. 3D Modelling and Visualization Based on the Unity Game Engine–Advantages and Challenges. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 161. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, A.; Kersten, T. Low-Cost development of an interactive, immersive virtual reality experience of the historic city model Stade 1620. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Donert, K.; Gossette, F.; Kienberger, S.; Marani, M.; Qureshi, S.; Tiede, D. Virtual globes: Serving science and society. Information 2012, 3, 372–390. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Wang, Z.; Li, Z. Representing time-dynamic geospatial objects on virtual globes using CZML—part i: Overview and key issues. ISPRS Int. J. Geo Inf. 2018, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-K. Within skyline query processing in dynamic road networks. ISPRS Int. J. Geo Inf. 2017, 6, 137. [Google Scholar] [CrossRef] [Green Version]
- Müller, R.D.; Qin, X.; Sandwell, D.T.; Dutkiewicz, A.; Williams, S.E.; Flament, N.; Maus, S.; Seton, M. The GPlates portal: Cloud-Based interactive 3D visualization of global geophysical and geological data in a web browser. PLoS ONE 2016, 11, e0150883. [Google Scholar] [CrossRef] [Green Version]
- Google Earth. Available online: https://www.google.com/earth/ (accessed on 5 May 2020).
- NASA WorldWind. Available online: https://worldwind.arc.nasa.gov/ (accessed on 5 May 2020).
- iTowns. Available online: http://www.itowns-project.org/ (accessed on 5 May 2020).
- Liang, J.; Gong, J.; Liu, J.; Zou, Y.; Zhang, J.; Sun, J.; Chen, S. Generating orthorectified multi-perspective 2.5 D maps to facilitate Web GIS-based visualization and exploitation of massive 3D city models. ISPRS Int. J. Geo Inf. 2016, 5, 212. [Google Scholar] [CrossRef] [Green Version]
- Gröger, G.; Plümer, L. CityGML—Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33. [Google Scholar] [CrossRef]
- Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.-H. OGC City Geography Markup Language (CityGML) Encoding Standard; Open Geospatial Consortium Inc.: Wayland, MA, USA, 2012. [Google Scholar]
- Open Geospatial Consortium. Available online: https://www.ogc.org/ (accessed on 5 May 2020).
- Kolbe, T.H. Representing and exchanging 3D city models with CityGML. In 3D Geo-Information Sciences; Springer: Berlin/Heidelberg, Germany, 2009; pp. 15–31. [Google Scholar]
- COLLADA. Available online: https://www.khronos.org/collada/ (accessed on 5 May 2020).
- X3D. Available online: http://www.web3d.org/x3d/what-x3d (accessed on 5 May 2020).
- 3D Tiles. Available online: https://github.com/AnalyticalGraphicsInc/3d-tiles (accessed on 5 May 2020).
- Murshed, S.M.; Al-Hyari, A.M.; Wendel, J.; Ansart, L. Design and implementation of a 4D web application for analytical visualization of smart city applications. ISPRS Int. J. Geo Inf. 2018, 7, 276. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, K.; Yao, Z.; Kolbe, T.H. Web-Based Exploration of and interaction with large and deeply structured semantic 3D city models using HTML5 and WebGL. In Proceedings of the Bridging Scales-Skalenübergreifende Nah-und Fernerkundungsmethoden, 35. Wissenschaftlich-Technische Jahrestagung der DGPF, Cologne, Germany, 16–18 March 2015. [Google Scholar]
- Farkas, G. Applicability of open-source web mapping libraries for building massive Web GIS clients. J. Geogr. Syst. 2017, 19, 273–295. [Google Scholar] [CrossRef]
- Chen, Y.; Shooraj, E.; Rajabifard, A.; Sabri, S. From IFC to 3D tiles: An integrated open-source solution for visualising BIMs on cesium. ISPRS Int. J. Geo Inf. 2018, 7, 393. [Google Scholar] [CrossRef] [Green Version]
- Resch, B.; Wohlfahrt, R.; Wosniok, C. Web-Based 4D visualization of marine geo-data using WebGL. Cartogr. Geogr. Inf. Sci. 2014, 41, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Sun, J.; Li, C.; Zhang, B. SolidEarth: A new digital Earth system for the modeling and visualization of the whole Earth space. Front. Earth Sci. 2014, 8, 524–539. [Google Scholar] [CrossRef]
- Ruzinoor, C.M.; Shariff, A.R.M.; Pradhan, B.; Rodzi Ahmad, M.; Rahim, M.S.M. A review on 3D terrain visualization of GIS data: Techniques and software. Geo Spat. Inf. Sci. 2012, 15, 105–115. [Google Scholar] [CrossRef]
- Zhai, R.; Lu, K.; Pan, W.; Dai, S. GPU-Based real-time terrain rendering: Design and implementation. Neurocomputing 2016, 171, 1–8. [Google Scholar] [CrossRef]
- Larsen, B.D.; Christensen, N.J. Real-Time terrain rendering using smooth hardware optimized level of detail. J. WSCG 2003, 11, 1. [Google Scholar]
- Dübel, S.; Schumann, H. Visualization of features in 3d terrain. ISPRS Int. J. Geo Inf. 2017, 6, 357. [Google Scholar] [CrossRef] [Green Version]
- Campos, R.; Quintana, J.; Garcia, R.; Schmitt, T.; Spoelstra, G.; Schaap, D. 3D simplification methods and large scale terrain tiling. Remote Sens. 2020, 12, 437. [Google Scholar] [CrossRef] [Green Version]
- Staso, U.; Soave, M.; Giori, A. Heterogeneous-Resolution and multi-source terrain builder for CesiumJS WebGL virtual globe. In Proceedings of the ICVAIV 2016, International Conference on Visual Analytics and Information Visualisation, Lisbon, Portugal, 19–22 July 2016. [Google Scholar]
- Vexcel Imaging UltraCam Falcon. Available online: http://www.vexcel-imaging.com/ultracam-falcon/ (accessed on 5 May 2020).
- Agisoft Metashape Professional. Available online: http://www.agisoft.com/ (accessed on 5 May 2020).
- LAStools. Available online: https://github.com/LAStools/LAStools/ (accessed on 5 May 2020).
- Trimble Inpho. Available online: https://geospatial.trimble.com/products-and-solutions/inpho (accessed on 5 May 2020).
- Frueh, C.; Sammon, R.; Zakhor, A. Automated texture mapping of 3D city models with oblique aerial imagery. In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004, Thessaloniki, Greece, 6–9 September 2004; pp. 396–403. [Google Scholar]
- SketchUp: 3D Design Software|3D Modeling on the Web. Available online: https://www.sketchup.com/ (accessed on 5 May 2020).
- Autodesk 3ds Max. Available online: https://www.autodesk.com/products/3ds-max/overview/ (accessed on 5 May 2020).
- Safe Software FME. Available online: https://www.safe.com/ (accessed on 5 May 2020).
- Julin, A.; Jaalama, K.; Virtanen, J.-P.; Pouke, M.; Ylipulli, J.; Vaaja, M.; Hyyppä, J.; Hyyppä, H. Characterizing 3D city modeling projects: Towards a harmonized interoperable system. ISPRS Int. J. Geo Inf. 2018, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- VirtualCity Systems Building Reconstruction. Available online: http://www.virtualcitysystems.de/en/products/buildingreconstruction (accessed on 5 May 2020).
- Çevre ve Şehircilik Bakanlığı (Ministry of Environment and Urbanization). Bizim Şehir Gaziantep İli Pilot Bölge Çalışması, Kentsel Tasarım Rehberi; Ministry of Environment and Urbanization: Ankara, Turkey, 2018; p. 130.
- The GL Transmission Format (glTF). Available online: https://www.khronos.org/gltf/ (accessed on 5 May 2020).
- Cesium ION. Available online: https://cesium.com/cesium-ion/ (accessed on 5 May 2020).
- Heightmap-1.0 Terrain Format. Available online: https://cesiumjs.org/data-and-assets/terrain/formats/heightmap-1.0/ (accessed on 5 May 2020).
- Quantized-Mesh-1.0 Terrain Format. Available online: https://cesiumjs.org/data-and-assets/terrain/formats/quantized-mesh-1.0/ (accessed on 5 May 2020).
- Uploading Data to Ion. Available online: https://cesium.com/docs/tutorials/uploading/ (accessed on 5 May 2020).
- Braun, J. Aspects on true-orthophoto production. In Proceedings of the 49th Photogrammetric Week, Stuttgart, Germany, 1–5 September 2013. [Google Scholar]
- 3D City Database. Available online: https://www.3dcitydb.org/ (accessed on 5 May 2020).
- Yao, Z.; Nagel, C.; Kunde, F.; Hudra, G.; Willkomm, P.; Donaubauer, A.; Adolphi, T.; Kolbe, T.H. 3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospat. Data Softw. Stand. 2018, 3, 1–26. [Google Scholar] [CrossRef] [Green Version]
- 3DCityDB Texture Atlas Creator. Available online: https://github.com/3dcitydb/texture-atlas-creator (accessed on 5 May 2020).
- Draco Compressed Meshes with glTF and 3D Tiles. Available online: https://cesium.com/blog/2018/04/09/draco-compression/ (accessed on 5 May 2020).
- Unity Manual—Importing Objects From 3D Studio Max. Available online: https://docs.unity3d.com/2017.4/Documentation/Manual/HOWTO-ImportObjectMax.html (accessed on 5 May 2020).
- Autodesk FBX—Adaptable File Format for 3D Animation Software. Available online: https://www.autodesk.com/products/fbx/overview (accessed on 5 May 2020).
- HTC Vive. Available online: https://www.vive.com/eu/ (accessed on 5 May 2020).
- SteamVR. Available online: https://store.steampowered.com/app/250820/SteamVR/ (accessed on 5 May 2020).
Advantages | Disadvantages |
---|---|
|
|
|
|
|
|
|
LoD2 Models PNG Textures | LoD2 Models JPEG Textures | Landscape Plan and Furniture (Before) | Landscape Plan and Furniture (After) | LoD3 Buildings (Before) | LoD3 Buildings (After) |
---|---|---|---|---|---|
15.454 files | 15.454 files | 608 files | 33 files | 3.847 files | 154 files |
709 MB | 100 MB | 1.233 MB | 83.1 MB | 568 MB | 94.4 MB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buyukdemircioglu, M.; Kocaman, S. Reconstruction and Efficient Visualization of Heterogeneous 3D City Models. Remote Sens. 2020, 12, 2128. https://doi.org/10.3390/rs12132128
Buyukdemircioglu M, Kocaman S. Reconstruction and Efficient Visualization of Heterogeneous 3D City Models. Remote Sensing. 2020; 12(13):2128. https://doi.org/10.3390/rs12132128
Chicago/Turabian StyleBuyukdemircioglu, Mehmet, and Sultan Kocaman. 2020. "Reconstruction and Efficient Visualization of Heterogeneous 3D City Models" Remote Sensing 12, no. 13: 2128. https://doi.org/10.3390/rs12132128
APA StyleBuyukdemircioglu, M., & Kocaman, S. (2020). Reconstruction and Efficient Visualization of Heterogeneous 3D City Models. Remote Sensing, 12(13), 2128. https://doi.org/10.3390/rs12132128