Search Results

Documents authored by Wasa, Kunihiro


Document
Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids

Authors: Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Finding a maximum cardinality common independent set in two matroids (also known as Matroid Intersection) is a classical combinatorial optimization problem, which generalizes several well-known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and an arborescence in directed graphs. Enumerating all maximal common independent sets in two (or more) matroids is a classical enumeration problem. In this paper, we address an "intersection" of these problems: Given two matroids and a threshold τ, the goal is to enumerate all maximal common independent sets in the matroids with cardinality at least τ. We show that this problem can be solved in polynomial delay and polynomial space. We also discuss how to enumerate all maximal common independent sets of two matroids in non-increasing order of their cardinalities.

Cite as

Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa. Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 58:1-58:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kobayashi_et_al:LIPIcs.MFCS.2023.58,
  author =	{Kobayashi, Yasuaki and Kurita, Kazuhiro and Wasa, Kunihiro},
  title =	{{Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{58:1--58:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.58},
  URN =		{urn:nbn:de:0030-drops-185921},
  doi =		{10.4230/LIPIcs.MFCS.2023.58},
  annote =	{Keywords: Polynomial-delay enumeration, Ranked Enumeration, Matroid intersection, Reverse search}
}
Document
Independent Set Reconfiguration on Directed Graphs

Authors: Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, Masahiro Takahashi, and Kunihiro Wasa

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Directed Token Sliding asks, given a directed graph and two sets of pairwise nonadjacent vertices, whether one can reach from one set to the other by repeatedly applying a local operation that exchanges a vertex in the current set with one of its out-neighbors, while keeping the nonadjacency. It can be seen as a reconfiguration process where a token is placed on each vertex in the current set, and the local operation slides a token along an arc respecting its direction. Previously, such a problem was extensively studied on undirected graphs, where the edges have no directions and thus the local operation is symmetric. Directed Token Sliding is a generalization of its undirected variant since an undirected edge can be simulated by two arcs of opposite directions. In this paper, we initiate the algorithmic study of Directed Token Sliding. We first observe that the problem is PSPACE-complete even if we forbid parallel arcs in opposite directions and that the problem on directed acyclic graphs is NP-complete and W[1]-hard parameterized by the size of the sets in consideration. We then show our main result: a linear-time algorithm for the problem on directed graphs whose underlying undirected graphs are trees, which are called polytrees. Such a result is also known for the undirected variant of the problem on trees [Demaine et al. TCS 2015], but the techniques used here are quite different because of the asymmetric nature of the directed problem. We present a characterization of yes-instances based on the existence of a certain set of directed paths, and then derive simple equivalent conditions from it by some observations, which yield an efficient algorithm. For the polytree case, we also present a quadratic-time algorithm that outputs, if the input is a yes-instance, one of the shortest reconfiguration sequences.

Cite as

Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, Masahiro Takahashi, and Kunihiro Wasa. Independent Set Reconfiguration on Directed Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 58:1-58:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ito_et_al:LIPIcs.MFCS.2022.58,
  author =	{Ito, Takehiro and Iwamasa, Yuni and Kobayashi, Yasuaki and Nakahata, Yu and Otachi, Yota and Takahashi, Masahiro and Wasa, Kunihiro},
  title =	{{Independent Set Reconfiguration on Directed Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{58:1--58:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.58},
  URN =		{urn:nbn:de:0030-drops-168567},
  doi =		{10.4230/LIPIcs.MFCS.2022.58},
  annote =	{Keywords: Combinatorial reconfiguration, token sliding, directed graph, independent set, graph algorithm}
}
Document
Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint

Authors: Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
We investigate the complexity of finding a transformation from a given spanning tree in a graph to another given spanning tree in the same graph via a sequence of edge flips. The exchange property of the matroid bases immediately yields that such a transformation always exists if we have no constraints on spanning trees. In this paper, we wish to find a transformation which passes through only spanning trees satisfying some constraint. Our focus is bounding either the maximum degree or the diameter of spanning trees, and we give the following results. The problem with a lower bound on maximum degree is solvable in polynomial time, while the problem with an upper bound on maximum degree is PSPACE-complete. The problem with a lower bound on diameter is NP-hard, while the problem with an upper bound on diameter is solvable in polynomial time.

Cite as

Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa. Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 15:1-15:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2022.15,
  author =	{Bousquet, Nicolas and Ito, Takehiro and Kobayashi, Yusuke and Mizuta, Haruka and Ouvrard, Paul and Suzuki, Akira and Wasa, Kunihiro},
  title =	{{Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{15:1--15:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.15},
  URN =		{urn:nbn:de:0030-drops-158253},
  doi =		{10.4230/LIPIcs.STACS.2022.15},
  annote =	{Keywords: combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time algorithms}
}
Document
Reconfiguration of Spanning Trees with Many or Few Leaves

Authors: Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
Let G be a graph and T₁,T₂ be two spanning trees of G. We say that T₁ can be transformed into T₂ via an edge flip if there exist two edges e ∈ T₁ and f in T₂ such that T₂ = (T₁⧵e) ∪ f. Since spanning trees form a matroid, one can indeed transform a spanning tree into any other via a sequence of edge flips, as observed in [Takehiro Ito et al., 2011]. We investigate the problem of determining, given two spanning trees T₁,T₂ with an additional property Π, if there exists an edge flip transformation from T₁ to T₂ keeping property Π all along. First we show that determining if there exists a transformation from T₁ to T₂ such that all the trees of the sequence have at most k (for any fixed k ≥ 3) leaves is PSPACE-complete. We then prove that determining if there exists a transformation from T₁ to T₂ such that all the trees of the sequence have at least k leaves (where k is part of the input) is PSPACE-complete even restricted to split, bipartite or planar graphs. We complete this result by showing that the problem becomes polynomial for cographs, interval graphs and when k = n-2.

Cite as

Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa. Reconfiguration of Spanning Trees with Many or Few Leaves. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ESA.2020.24,
  author =	{Bousquet, Nicolas and Ito, Takehiro and Kobayashi, Yusuke and Mizuta, Haruka and Ouvrard, Paul and Suzuki, Akira and Wasa, Kunihiro},
  title =	{{Reconfiguration of Spanning Trees with Many or Few Leaves}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.24},
  URN =		{urn:nbn:de:0030-drops-128909},
  doi =		{10.4230/LIPIcs.ESA.2020.24},
  annote =	{Keywords: combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time algorithms}
}
Document
Finding the Anticover of a String

Authors: Mai Alzamel, Alessio Conte, Shuhei Denzumi, Roberto Grossi, Costas S. Iliopoulos, Kazuhiro Kurita, and Kunihiro Wasa

Published in: LIPIcs, Volume 161, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)


Abstract
A k-anticover of a string x is a set of pairwise distinct factors of x of equal length k, such that every symbol of x is contained into an occurrence of at least one of those factors. The existence of a k-anticover can be seen as a notion of non-redundancy, which has application in computational biology, where they are associated with various non-regulatory mechanisms. In this paper we address the complexity of the problem of finding a k-anticover of a string x if it exists, showing that the decision problem is NP-complete on general strings for k ≥ 3. We also show that the problem admits a polynomial-time solution for k=2. For unbounded k, we provide an exact exponential algorithm to find a k-anticover of a string of length n (or determine that none exists), which runs in O*(min {3^{(n-k)/3)}, ((k(k+1))/2)^{n/(k+1)) time using polynomial space.

Cite as

Mai Alzamel, Alessio Conte, Shuhei Denzumi, Roberto Grossi, Costas S. Iliopoulos, Kazuhiro Kurita, and Kunihiro Wasa. Finding the Anticover of a String. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 2:1-2:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{alzamel_et_al:LIPIcs.CPM.2020.2,
  author =	{Alzamel, Mai and Conte, Alessio and Denzumi, Shuhei and Grossi, Roberto and Iliopoulos, Costas S. and Kurita, Kazuhiro and Wasa, Kunihiro},
  title =	{{Finding the Anticover of a String}},
  booktitle =	{31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)},
  pages =	{2:1--2:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-149-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{161},
  editor =	{G{\o}rtz, Inge Li and Weimann, Oren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2020.2},
  URN =		{urn:nbn:de:0030-drops-121270},
  doi =		{10.4230/LIPIcs.CPM.2020.2},
  annote =	{Keywords: Anticover, String algorithms, Stringology, NP-complete}
}
Document
Shortest Reconfiguration of Colorings Under Kempe Changes

Authors: Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Moritz Mühlenthaler, Akira Suzuki, and Kunihiro Wasa

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
A k-coloring of a graph maps each vertex of the graph to a color in {1, 2, …, k}, such that no two adjacent vertices receive the same color. Given a k-coloring of a graph, a Kempe change produces a new k-coloring by swapping the colors in a bicolored connected component. We investigate the complexity of finding the smallest number of Kempe changes needed to transform a given k-coloring into another given k-coloring. We show that this problem admits a polynomial-time dynamic programming algorithm on path graphs, which turns out to be highly non-trivial. Furthermore, the problem is NP-hard even on star graphs and we show that on such graphs it admits a constant-factor approximation algorithm and is fixed-parameter tractable when parameterized by the number k of colors. The hardness result as well as the algorithmic results are based on the notion of a canonical transformation.

Cite as

Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Moritz Mühlenthaler, Akira Suzuki, and Kunihiro Wasa. Shortest Reconfiguration of Colorings Under Kempe Changes. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 35:1-35:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bonamy_et_al:LIPIcs.STACS.2020.35,
  author =	{Bonamy, Marthe and Heinrich, Marc and Ito, Takehiro and Kobayashi, Yusuke and Mizuta, Haruka and M\"{u}hlenthaler, Moritz and Suzuki, Akira and Wasa, Kunihiro},
  title =	{{Shortest Reconfiguration of Colorings Under Kempe Changes}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{35:1--35:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.35},
  URN =		{urn:nbn:de:0030-drops-118961},
  doi =		{10.4230/LIPIcs.STACS.2020.35},
  annote =	{Keywords: Combinatorial Reconfiguration, Graph Algorithms, Graph Coloring, Kempe Equivalence}
}
Document
Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees in Graphs

Authors: Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino, Takeaki Uno, and Kunihiro Wasa

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
This paper investigates induced Steiner subgraphs as a variant of the classical Steiner trees, so as to compactly represent the (exponentially many) Steiner trees sharing the same underlying induced subgraph. We prove that the enumeration of all (inclusion-minimal) induced Steiner subgraphs is harder than the well-known Hypergraph Transversal enumeration problem if the number of terminals is not fixed. When the number of terminals is fixed, we propose a polynomial delay algorithm for listing all induced Steiner subgraphs of minimum size. We also propose a polynomial delay algorithm for listing the set of minimal induced Steiner subgraphs when the number of terminals is 3.

Cite as

Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino, Takeaki Uno, and Kunihiro Wasa. Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees in Graphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 73:1-73:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{conte_et_al:LIPIcs.MFCS.2019.73,
  author =	{Conte, Alessio and Grossi, Roberto and Kant\'{e}, Mamadou Moustapha and Marino, Andrea and Uno, Takeaki and Wasa, Kunihiro},
  title =	{{Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees in Graphs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{73:1--73:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.73},
  URN =		{urn:nbn:de:0030-drops-110174},
  doi =		{10.4230/LIPIcs.MFCS.2019.73},
  annote =	{Keywords: Graph algorithms, enumeration, listing and counting, Steiner trees, induced subgraphs}
}
Document
The Perfect Matching Reconfiguration Problem

Authors: Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Arnaud Mary, Moritz Mühlenthaler, and Kunihiro Wasa

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We study the perfect matching reconfiguration problem: Given two perfect matchings of a graph, is there a sequence of flip operations that transforms one into the other? Here, a flip operation exchanges the edges in an alternating cycle of length four. We are interested in the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem is PSPACE-complete even for split graphs and for bipartite graphs of bounded bandwidth with maximum degree five. We then investigate polynomial-time solvable cases. Specifically, we prove that the problem is solvable in polynomial time for strongly orderable graphs (that include interval graphs and strongly chordal graphs), for outerplanar graphs, and for cographs (also known as P_4-free graphs). Furthermore, for each yes-instance from these graph classes, we show that a linear number of flip operations is sufficient and we can exhibit a corresponding sequence of flip operations in polynomial time.

Cite as

Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Arnaud Mary, Moritz Mühlenthaler, and Kunihiro Wasa. The Perfect Matching Reconfiguration Problem. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 80:1-80:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonamy_et_al:LIPIcs.MFCS.2019.80,
  author =	{Bonamy, Marthe and Bousquet, Nicolas and Heinrich, Marc and Ito, Takehiro and Kobayashi, Yusuke and Mary, Arnaud and M\"{u}hlenthaler, Moritz and Wasa, Kunihiro},
  title =	{{The Perfect Matching Reconfiguration Problem}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{80:1--80:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.80},
  URN =		{urn:nbn:de:0030-drops-110248},
  doi =		{10.4230/LIPIcs.MFCS.2019.80},
  annote =	{Keywords: Combinatorial Reconfiguration, Graph Algorithms, Perfect Matching}
}
Document
Efficient Enumeration of Dominating Sets for Sparse Graphs

Authors: Kazuhiro Kurita, Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
A dominating set D of a graph G is a set of vertices such that any vertex in G is in D or its neighbor is in D. Enumeration of minimal dominating sets in a graph is one of central problems in enumeration study since enumeration of minimal dominating sets corresponds to enumeration of minimal hypergraph transversal. However, enumeration of dominating sets including non-minimal ones has not been received much attention. In this paper, we address enumeration problems for dominating sets from sparse graphs which are degenerate graphs and graphs with large girth, and we propose two algorithms for solving the problems. The first algorithm enumerates all the dominating sets for a k-degenerate graph in O(k) time per solution using O(n + m) space, where n and m are respectively the number of vertices and edges in an input graph. That is, the algorithm is optimal for graphs with constant degeneracy such as trees, planar graphs, H-minor free graphs with some fixed H. The second algorithm enumerates all the dominating sets in constant time per solution for input graphs with girth at least nine.

Cite as

Kazuhiro Kurita, Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient Enumeration of Dominating Sets for Sparse Graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{kurita_et_al:LIPIcs.ISAAC.2018.8,
  author =	{Kurita, Kazuhiro and Wasa, Kunihiro and Arimura, Hiroki and Uno, Takeaki},
  title =	{{Efficient Enumeration of Dominating Sets for Sparse Graphs}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.8},
  URN =		{urn:nbn:de:0030-drops-99560},
  doi =		{10.4230/LIPIcs.ISAAC.2018.8},
  annote =	{Keywords: Enumeration algorithm, polynomial amortized time, dominating set, girth, degeneracy}
}
Document
On Maximal Cliques with Connectivity Constraints in Directed Graphs

Authors: Alessio Conte, Mamadou Moustapha Kanté, Takeaki Uno, and Kunihiro Wasa

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
Finding communities in the form of cohesive subgraphs is a fundamental problem in network analysis. In domains that model networks as undirected graphs, communities are generally associated with dense subgraphs, and many community models have been proposed. Maximal cliques are arguably the most widely studied among such models, with early works dating back to the '60s, and a continuous stream of research up to the present. In domains that model networks as directed graphs, several approaches for community detection have been proposed, but there seems to be no clear model of cohesive subgraph, i.e., of what a community should look like. We extend the fundamental model of clique to directed graphs, adding the natural constraint of strong connectivity within the clique. We characterize the problem by giving a tight bound for the number of such cliques in a graph, and highlighting useful structural properties. We then exploit these properties to produce the first algorithm with polynomial delay for enumerating maximal strongly connected cliques.

Cite as

Alessio Conte, Mamadou Moustapha Kanté, Takeaki Uno, and Kunihiro Wasa. On Maximal Cliques with Connectivity Constraints in Directed Graphs. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 23:1-23:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{conte_et_al:LIPIcs.ISAAC.2017.23,
  author =	{Conte, Alessio and Kant\'{e}, Mamadou Moustapha and Uno, Takeaki and Wasa, Kunihiro},
  title =	{{On Maximal Cliques with Connectivity Constraints in Directed Graphs}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{23:1--23:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.23},
  URN =		{urn:nbn:de:0030-drops-82284},
  doi =		{10.4230/LIPIcs.ISAAC.2017.23},
  annote =	{Keywords: Enumeration algorithms, Bounded delay, Directed graphs, Community structure, Network analytics}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail