Property |
Value |
dbo:abstract
|
- 二面角(にめんかく、英: dihedral angle)は、2つの平面(またはその部分集合)がなす角度である。たとえば、二面角が0なら2面は平行(同一の場合を含む)で、π/2(90°)なら垂直である。 二面角は、法線同士の角度として定義される。つまり、2面の法線ベクトルをa、bとすると二面角 φ は で表せる。二面角は2π(360°)の周期性を除いて一意には定まらないが、通常は主値として0~π(180°)の範囲で表す。ただし、多面体の面で内側と外側を区別する場合などでは、0~360°の範囲で表す。また、内側・外側も面の向きも区別しない場合は、 と絶対値を取り、0~π/2(90°)の範囲で表す。2つの平面は鋭角と鈍角の2つの角度を為すので、そのうち鋭角のほうを取っていることになる。 二面角は、2面に垂直な平面(平行移動の自由度を残して決まる)での断面内で考えると、通常の直線同士の角度に還元できる。面の断面は直線なので、断面の2直線がなす角度が2面の二面角である。 二面角は、3つの(零でない)ベクトルa、b、cに対しても定義でき、面ab(ベクトルaとbが張る面)と面bcの二面角を考える。また、4つの(異なる)点A・B・C・Dについても、面ABCと面BCDの二面角を考える。面ABCと面BCDの二面角が0でない場合、直線ABと直線CDはねじれの位置にある。このため、ねじれ角(torsion angle)ともいう。 (ja)
- 二面角(にめんかく、英: dihedral angle)は、2つの平面(またはその部分集合)がなす角度である。たとえば、二面角が0なら2面は平行(同一の場合を含む)で、π/2(90°)なら垂直である。 二面角は、法線同士の角度として定義される。つまり、2面の法線ベクトルをa、bとすると二面角 φ は で表せる。二面角は2π(360°)の周期性を除いて一意には定まらないが、通常は主値として0~π(180°)の範囲で表す。ただし、多面体の面で内側と外側を区別する場合などでは、0~360°の範囲で表す。また、内側・外側も面の向きも区別しない場合は、 と絶対値を取り、0~π/2(90°)の範囲で表す。2つの平面は鋭角と鈍角の2つの角度を為すので、そのうち鋭角のほうを取っていることになる。 二面角は、2面に垂直な平面(平行移動の自由度を残して決まる)での断面内で考えると、通常の直線同士の角度に還元できる。面の断面は直線なので、断面の2直線がなす角度が2面の二面角である。 二面角は、3つの(零でない)ベクトルa、b、cに対しても定義でき、面ab(ベクトルaとbが張る面)と面bcの二面角を考える。また、4つの(異なる)点A・B・C・Dについても、面ABCと面BCDの二面角を考える。面ABCと面BCDの二面角が0でない場合、直線ABと直線CDはねじれの位置にある。このため、ねじれ角(torsion angle)ともいう。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6503 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 二面角(にめんかく、英: dihedral angle)は、2つの平面(またはその部分集合)がなす角度である。たとえば、二面角が0なら2面は平行(同一の場合を含む)で、π/2(90°)なら垂直である。 二面角は、法線同士の角度として定義される。つまり、2面の法線ベクトルをa、bとすると二面角 φ は で表せる。二面角は2π(360°)の周期性を除いて一意には定まらないが、通常は主値として0~π(180°)の範囲で表す。ただし、多面体の面で内側と外側を区別する場合などでは、0~360°の範囲で表す。また、内側・外側も面の向きも区別しない場合は、 と絶対値を取り、0~π/2(90°)の範囲で表す。2つの平面は鋭角と鈍角の2つの角度を為すので、そのうち鋭角のほうを取っていることになる。 二面角は、2面に垂直な平面(平行移動の自由度を残して決まる)での断面内で考えると、通常の直線同士の角度に還元できる。面の断面は直線なので、断面の2直線がなす角度が2面の二面角である。 (ja)
- 二面角(にめんかく、英: dihedral angle)は、2つの平面(またはその部分集合)がなす角度である。たとえば、二面角が0なら2面は平行(同一の場合を含む)で、π/2(90°)なら垂直である。 二面角は、法線同士の角度として定義される。つまり、2面の法線ベクトルをa、bとすると二面角 φ は で表せる。二面角は2π(360°)の周期性を除いて一意には定まらないが、通常は主値として0~π(180°)の範囲で表す。ただし、多面体の面で内側と外側を区別する場合などでは、0~360°の範囲で表す。また、内側・外側も面の向きも区別しない場合は、 と絶対値を取り、0~π/2(90°)の範囲で表す。2つの平面は鋭角と鈍角の2つの角度を為すので、そのうち鋭角のほうを取っていることになる。 二面角は、2面に垂直な平面(平行移動の自由度を残して決まる)での断面内で考えると、通常の直線同士の角度に還元できる。面の断面は直線なので、断面の2直線がなす角度が2面の二面角である。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |