Dates are inconsistent

Dates are inconsistent

1200 results sorted by ID

2024/1875 (PDF) Last updated: 2024-11-16
mUOV: Masking the Unbalanced Oil and Vinegar Digital Sigital Signature Scheme at First- and Higher-Order
Suparna Kundu, Quinten Norga, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

The National Institute for Standards and Technology (NIST) initiated a standardization procedure for additional digital signatures and recently announced round-2 candidates for the PQ additional digital signature schemes. The multivariate digital signature scheme Unbalanced Oil and Vinegar (UOV) is one of the oldest post-quantum schemes and has been selected by NIST for Round 2. Although UOV is mathematically secure, several side-channel attacks (SCA) have been shown on the UOV or UOV-based...

2024/1874 (PDF) Last updated: 2024-11-16
Multi-Holder Anonymous Credentials from BBS Signatures
Andrea Flamini, Eysa Lee, Anna Lysyanskaya
Cryptographic protocols

The eIDAS 2.0 regulation aims to develop interoperable digital identities for European citizens, and it has recently become law. One of its requirements is that credentials be unlinkable. Anonymous credentials (AC) allow holders to prove statements about their identity in a way that does not require to reveal their identity and does not enable linking different usages of the same credential. As a result, they are likely to become the technology that provides digital identity for...

2024/1850 (PDF) Last updated: 2024-11-12
Single-trace side-channel attacks on MAYO exploiting leaky modular multiplication
Sönke Jendral, Elena Dubrova
Attacks and cryptanalysis

In response to the quantum threat, new post-quantum cryptographic algorithms will soon be deployed to replace existing public-key schemes. MAYO is a quantum-resistant digital signature scheme whose small keys and signatures make it suitable for widespread adoption, including on embedded platforms with limited security resources. This paper demonstrates two single-trace side-channel attacks on a MAYO implementation in ARM Cortex-M4 that recover a secret key with probabilities of 99.9% and...

2024/1846 (PDF) Last updated: 2024-11-10
The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy
Vadim Lyubashevsky, Gregor Seiler, Patrick Steuer
Implementation

The hardness of lattice problems offers one of the most promising security foundations for quantum-safe cryptography. Basic schemes for public key encryption and digital signatures are already close to standardization at NIST and several other standardization bodies, and the research frontier has moved on to building primitives with more advanced privacy features. At the core of many such primi- tives are zero-knowledge proofs. In recent years, zero-knowledge proofs for (and using)...

2024/1839 (PDF) Last updated: 2024-11-08
Cryptographically Secure Digital Consent
F. Betül Durak, Abdullah Talayhan, Serge Vaudenay
Cryptographic protocols

In the digital age, the concept of consent for online actions executed by third parties is crucial for maintaining trust and security in third-party services. This work introduces the notion of cryptographically secure digital consent, which aims to replicate the traditional consent process in the online world. We provide a flexible digital consent solution that accommodates different use cases and ensures the integrity of the consent process. The proposed framework involves a client...

2024/1818 (PDF) Last updated: 2024-11-06
SoK: On the Physical Security of UOV-based Signature Schemes
Thomas Aulbach, Fabio Campos, Juliane Krämer
Attacks and cryptanalysis

Multivariate cryptography currently centres mostly around UOV-based signature schemes: All multivariate round 2 candidates in the selection process for additional digital signatures by NIST are either UOV itself or close variations of it: MAYO, QR-UOV, SNOVA, and UOV. Also schemes which have been in the focus of the multivariate research community, but are broken by now - like Rainbow and LUOV - are based on UOV. Both UOV and the schemes based on it have been frequently analyzed regarding...

2024/1817 (PDF) Last updated: 2024-11-12
Improved ML-DSA Hardware Implementation With First Order Masking Countermeasure
Kamal Raj, Prasanna Ravi, Tee Kiah Chia, Anupam Chattopadhyay
Implementation

We present the protected hardware implementation of the Module-Lattice-Based Digital Signature Standard (ML-DSA). ML-DSA is an extension of Dilithium 3.1, which is the winner of the Post Quantum Cryptography (PQC) competition in the digital signature category. The proposed design is based on the existing high-performance Dilithium 3.1 design. We implemented existing Dilithium masking gadgets in hardware, which were only implemented in software. The masking gadgets are integrated with the...

2024/1809 (PDF) Last updated: 2024-11-05
Foundations of Adaptor Signatures
Paul Gerhart, Dominique Schröder, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Applications

Adaptor signatures extend the functionality of regular signatures through the computation of pre-signatures on messages for statements of NP relations. Pre-signatures are publicly verifiable; they simultaneously hide and commit to a signature of an underlying signature scheme on that message. Anybody possessing a corresponding witness for the statement can adapt the pre-signature to obtain the "regular" signature. Adaptor signatures have found numerous applications for conditional payments...

2024/1807 (PDF) Last updated: 2024-11-05
An Unstoppable Ideal Functionality for Signatures and a Modular Analysis of the Dolev-Strong Broadcast
Ran Cohen, Jack Doerner, Eysa Lee, Anna Lysyanskaya, Lawrence Roy
Cryptographic protocols

Many foundational results in the literature of consensus follow the Dolev-Yao model (FOCS '81), which treats digital signatures as ideal objects with perfect correctness and unforgeability. However, no work has yet formalized an ideal signature scheme that is both suitable for this methodology and possible to instantiate, or a composition theorem that ensures security when instantiating it cryptographically. The Universal Composition (UC) framework would ensure composition if we could...

2024/1796 (PDF) Last updated: 2024-11-03
Isogeny interpolation and the computation of isogenies from higher dimensional representations
David Jao, Jeanne Laflamme
Implementation

The Supersingular Isogeny Diffie-Hellman (SIDH) scheme is a public key cryptosystem that was submitted to the National Institute of Standards and Technology's competition for the standardization of post-quantum cryptography protocols. The private key in SIDH consists of an isogeny whose degree is a prime power. In July 2022, Castryck and Decru discovered an attack that completely breaks the scheme by recovering Bob's secret key, using isogenies between higher dimensional abelian varieties to...

2024/1789 (PDF) Last updated: 2024-11-04
Stealth and Beyond: Attribute-Driven Accountability in Bitcoin Transactions
Alberto Maria Mongardini, Daniele Friolo, Giuseppe Ateniese
Public-key cryptography

Bitcoin enables decentralized, pseudonymous transactions, but balancing privacy with accountability remains a challenge. This paper introduces a novel dual accountability mechanism that enforces both sender and recipient compliance in Bitcoin transactions. Senders are restricted to spending Unspent Transaction Outputs (UTXOs) that meet specific criteria, while recipients must satisfy legal and ethical requirements before receiving funds. We enhance stealth addresses by integrating compliance...

2024/1777 (PDF) Last updated: 2024-11-16
Masking Gaussian Elimination at Arbitrary Order, with Application to Multivariate- and Code-Based PQC
Quinten Norga, Suparna Kundu, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

Digital signature schemes based on multivariate- and code-based hard problems are promising alternatives for lattice-based signature schemes, due to their smaller signature size. Hence, several candidates in the ongoing additional standardization for quantum secure digital signature (DS) schemes by the National Institute of Standards and Technology (NIST) rely on such alternate hard problems. Gaussian Elimination (GE) is a critical component in the signing procedure of these schemes. In this...

2024/1773 (PDF) Last updated: 2024-10-31
Universal Adaptor Signatures from Blackbox Multi-Party Computation
Michele Ciampi, Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
Public-key cryptography

Adaptor signatures (AS) extend the functionality of traditional digital signatures by enabling the generation of a pre-signature tied to an instance of a hard NP relation, which can later be turned (adapted) into a full signature upon revealing a corresponding witness. The recent work by Liu et al. [ASIACRYPT 2024] devised a generic AS scheme that can be used for any NP relation---which here we will refer to as universal adaptor signatures scheme, in short UAS---from any one-way function....

2024/1770 (PDF) Last updated: 2024-10-30
Improved Attacks for SNOVA by Exploiting Stability under a Group Action
Daniel Cabarcas, Peigen Li, Javier Verbel, Ricardo Villanueva-Polanco
Attacks and cryptanalysis

SNOVA is a post-quantum digital signature scheme based on multivariate polynomials. It is a first-round candidate in an ongoing NIST standardization process for post-quantum signatures, where it stands out for its efficiency and compactness. Since its initial submission, there have been several improvements to its security analysis, both on key recovery and forgery attacks. All these works reduce to solving a structured system of quadratic polynomials, which we refer to as SNOVA...

2024/1759 (PDF) Last updated: 2024-10-28
A Forgery Attack on a Code-based Signature Scheme
Ali Babaei, Taraneh Eghlidos
Attacks and cryptanalysis

With the advent of quantum computers, the security of cryptographic primitives, including digital signature schemes, has been compromised. To deal with this issue, some signature schemes have been introduced to resist against these computers. These schemes are known as post-quantum signature schemes. One group of these schemes is based on the hard problems of coding theory, called code-based cryptographic schemes. Several code-based signature schemes are inspired by the McEliece encryption...

2024/1754 (PDF) Last updated: 2024-10-28
PQNTRU: Acceleration of NTRU-based Schemes via Customized Post-Quantum Processor
Zewen Ye, Junhao Huang, Tianshun Huang, Yudan Bai, Jinze Li, Hao Zhang, Guangyan Li, Donglong Chen, Ray C.C. Cheung, Kejie Huang
Implementation

Post-quantum cryptography (PQC) has rapidly evolved in response to the emergence of quantum computers, with the US National Institute of Standards and Technology (NIST) selecting four finalist algorithms for PQC standardization in 2022, including the Falcon digital signature scheme. The latest round of digital signature schemes introduced Hawk, both based on the NTRU lattice, offering compact signatures, fast generation, and verification suitable for deployment on resource-constrained...

2024/1746 (PDF) Last updated: 2024-10-25
Secure and Privacy-preserving CBDC Offline Payments using a Secure Element
Elli Androulaki, Angelo De Caro, Kaoutar El Khiyaoui, Romain Gay, Rebekah Mercer, Alessandro Sorniotti

Offline payments present an opportunity for central bank digital currency to address the lack of digital financial inclusion plaguing existing digital payment solutions. However, the design of secure offline payments is a complex undertaking; for example, the lack of connectivity during the payments renders double spending attacks trivial. While the identification of double spenders and penal sanctions may curb attacks by individuals, they may not be sufficient against concerted efforts by...

2024/1677 (PDF) Last updated: 2024-10-16
Batch Range Proof: How to Make Threshold ECDSA More Efficient
Guofeng Tang, Shuai Han, Li Lin, Changzheng Wei, Ying Yan
Cryptographic protocols

With the demand of cryptocurrencies, threshold ECDSA recently regained popularity. So far, several methods have been proposed to construct threshold ECDSA, including the usage of OT and homomorphic encryptions (HE). Due to the mismatch between the plaintext space and the signature space, HE-based threshold ECDSA always requires zero-knowledge range proofs, such as Paillier and Joye-Libert (JL) encryptions. However, the overhead of range proofs constitutes a major portion of the total...

2024/1660 (PDF) Last updated: 2024-10-14
A Note on the Hint in the Dilithium Digital Signature Scheme
Amit Berman, Ariel Doubchak, Noam Livne
Cryptographic protocols

In the Dilithium digital signature scheme, there is an inherent tradeoff between the length of the public key, and the length of the signature. The coefficients of the main part of the public-key, the vector $\mathbf{t}$, are compressed (in a lossy manner), or "quantized", during the key-generation procedure, in order to save on the public-key size. That is, the coefficients are divided by some fixed denominator, and only the quotients are published. However, this results in some "skew"...

2024/1649 (PDF) Last updated: 2024-10-13
Multiplying Polynomials without Powerful Multiplication Instructions (Long Paper)
Vincent Hwang, YoungBeom Kim, Seog Chung Seo
Implementation

We improve the performance of lattice-based cryptosystems Dilithium on Cortex-M3 with expensive multiplications. Our contribution is two-fold: (i) We generalize Barrett multiplication and show that the resulting shape-independent modular multiplication performs comparably to long multiplication on some platforms without special hardware when precomputation is free. We call a modular multiplication “shape-independent” if its correctness and efficiency depend only on the magnitude of moduli...

2024/1564 (PDF) Last updated: 2024-10-04
A Simple Framework for Secure Key Leasing
Fuyuki Kitagawa, Tomoyuki Morimae, Takashi Yamakawa
Public-key cryptography

Secure key leasing (a.k.a. key-revocable cryptography) enables us to lease a cryptographic key as a quantum state in such a way that the key can be later revoked in a verifiable manner. We propose a simple framework for constructing cryptographic primitives with secure key leasing via the certified deletion property of BB84 states. Based on our framework, we obtain the following schemes. - A public key encryption scheme with secure key leasing that has classical revocation based on any...

2024/1553 (PDF) Last updated: 2024-10-03
STARK-based Signatures from the RPO Permutation
Shahla Atapoor, Cyprien Delpech de Saint Guilhem, Al Kindi
Public-key cryptography

This work describes a digital signature scheme constructed from a zero-knowledge proof of knowledge of a pre-image of the Rescue Prime Optimized (RPO) permutation. The proof of knowledge is constructed with the DEEP-ALI interactive oracle proof combined with the Ben-Sasson--Chiesa--Spooner (BCS) transformation in the random oracle model. The EUF-CMA security of the resulting signature scheme is established from the UC-friendly security properties of the BCS transformation and the pre-image...

2024/1550 (PDF) Last updated: 2024-10-03
MAYO Key Recovery by Fixing Vinegar Seeds
Sönke Jendral, Elena Dubrova
Attacks and cryptanalysis

As the industry prepares for the transition to post-quantum secure public key cryptographic algorithms, vulnerability analysis of their implementations is gaining importance. A theoretically secure cryptographic algorithm should also be able to withstand the challenges of physical attacks in real-world environments. MAYO is a candidate in the ongoing first round of the NIST post-quantum standardization process for selecting additional digital signature schemes. This paper demonstrates three...

2024/1539 (PDF) Last updated: 2024-10-02
Quantum Cryptography from Meta-Complexity
Taiga Hiroka, Tomoyuki Morimae
Foundations

In classical cryptography, one-way functions (OWFs) are the minimal assumption, while recent active studies have demonstrated that OWFs are not necessarily the minimum assumption in quantum cryptography. Several new primitives have been introduced such as pseudorandom unitaries (PRUs), pseudorandom function-like state generators (PRFSGs), pseudorandom state generators (PRSGs), one-way state generators (OWSGs), one-way puzzles (OWPuzzs), and EFI pairs. They are believed to be weaker than...

2024/1523 (PDF) Last updated: 2024-09-27
Functional Adaptor Signatures: Beyond All-or-Nothing Blockchain-based Payments
Nikhil Vanjani, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols

In scenarios where a seller holds sensitive data $x$, like employee / patient records or ecological data, and a buyer seeks to obtain an evaluation of specific function $f$ on this data, solutions in trustless digital environments like blockchain-based Web3 systems typically fall into two categories: (1) Smart contract-powered solutions and (2) cryptographic solutions leveraging tools such as adaptor signatures. The former approach offers atomic transactions where the buyer learns the...

2024/1510 (PDF) Last updated: 2024-09-26
Group Factorisation for Smaller Signatures from Cryptographic Group Actions
Giuseppe D'Alconzo, Alessio Meneghetti, Edoardo Signorini
Public-key cryptography

Cryptographic group actions have gained significant attention in recent years for their application on post-quantum Sigma protocols and digital signatures. In NIST's recent additional call for post-quantum signatures, three relevant proposals are based on group actions: LESS, MEDS, and ALTEQ. This work explores signature optimisations leveraging a group's factorisation. We show that if the group admits a factorisation as a semidirect product of subgroups, the group action can be restricted...

2024/1467 (PDF) Last updated: 2024-09-19
P2C2T: Preserving the Privacy of Cross-Chain Transfer
Panpan Han, Zheng Yan, Laurence T. Yang, Elisa Bertino
Cryptographic protocols

Blockchain-enabled digital currency systems have typically operated in isolation, lacking necessary mechanisms for seamless interconnection. Consequently, transferring assets across distinct currency systems remains a complex challenge, with existing schemes often falling short in ensuring security, privacy, and practicality. This paper proposes P2C2T -- a privacy-preserving cross-chain transfer scheme. It is the first scheme to address atomicity, unlinkability, indistinguishability,...

2024/1422 (PDF) Last updated: 2024-09-11
ZKFault: Fault attack analysis on zero-knowledge based post-quantum digital signature schemes
Puja Mondal, Supriya Adhikary, Suparna Kundu, Angshuman Karmakar
Attacks and cryptanalysis

Computationally hard problems based on coding theory, such as the syndrome decoding problem, have been used for constructing secure cryptographic schemes for a long time. Schemes based on these problems are also assumed to be secure against quantum computers. However, these schemes are often considered impractical for real-world deployment due to large key sizes and inefficient computation time. In the recent call for standardization of additional post-quantum digital signatures by the...

2024/1404 (PDF) Last updated: 2024-09-09
$\Pi$-signHD: A New Structure for the SQIsign Family with Flexible Applicability
Kaizhan Lin, Weize Wang, Chang-An Zhao, Yunlei Zhao
Implementation

Digital signature is a fundamental cryptographic primitive and is widely used in the real world. Unfortunately, the current digital signature standards like EC-DSA and RSA are not quantum-resistant. Among post-quantum cryptography (PQC), isogeny-based signatures preserve some advantages of elliptic curve cryptosystems, particularly offering small signature sizes. Currently, SQIsign and its variants are the most promising isogeny-based digital signature schemes. In this paper, we propose a...

2024/1397 (PDF) Last updated: 2024-09-05
Efficient Batch Algorithms for the Post-Quantum Crystals Dilithium Signature Scheme and Crystals Kyber Encryption Scheme
Nazlı Deniz TÜRE, Murat CENK
Cryptographic protocols

Digital signatures ensure authenticity and secure communication. They are used to verify the integrity and authenticity of signed documents and are widely utilized in various fields such as information technologies, finance, education, and law. They are crucial in securing servers against cyber attacks and authenticating connections between clients and servers. Additionally, encryption is used in many areas, such as secure communication, cloud, server and database security to ensure data...

2024/1380 (PDF) Last updated: 2024-09-03
EUCLEAK
Thomas Roche
Attacks and cryptanalysis

Secure elements are small microcontrollers whose main purpose is to generate/store secrets and then execute cryptographic operations. They undergo the highest level of security evaluations that exists (Common Criteria) and are often considered inviolable, even in the worst-case attack scenarios. Hence, complex secure systems build their security upon them. FIDO hardware tokens are strong authentication factors to sign in to applications (any web service supporting FIDO); they often embed...

2024/1374 (PDF) Last updated: 2024-09-02
Lifting approach against the SNOVA scheme
Shuhei Nakamura, Yusuke Tani, Hiroki Furue
Attacks and cryptanalysis

In 2022, Wang et al. proposed the multivariate signature scheme SNOVA as a UOV variant over the non-commutative ring of $\ell \times \ell $ matrices over $\mathbb{F}_q$. This scheme has small public key and signature size and is a first round candidate of NIST PQC additional digital signature project. Recently, Ikematsu and Akiyama, and Li and Ding show that the core matrices of SNOVA with $v$ vinegar-variables and $o$ oil-variables are regarded as the representation matrices of UOV with...

2024/1365 (PDF) Last updated: 2024-08-30
High-Throughput GPU Implementation of Dilithium Post-Quantum Digital Signature
Shiyu Shen, Hao Yang, Wangchen Dai, Hong Zhang, Zhe Liu, Yunlei Zhao
Implementation

Digital signatures are fundamental building blocks in various protocols to provide integrity and authenticity. The development of the quantum computing has raised concerns about the security guarantees afforded by classical signature schemes. CRYSTALS-Dilithium is an efficient post-quantum digital signature scheme based on lattice cryptography and has been selected as the primary algorithm for standardization by the National Institute of Standards and Technology. In this work, we present a...

2024/1309 (PDF) Last updated: 2024-08-21
R-STELLAR: A Resilient Synthesizable Signature Attenuation SCA Protection on AES-256 with built-in Attack-on-Countermeasure Detection
Archisman Ghosh, Dong-Hyun Seo, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications

Side-channel attacks (SCAs) remain a significant threat to the security of cryptographic systems in modern embedded devices. Even mathematically secure cryptographic algorithms, when implemented in hardware, inadvertently leak information through physical side-channel signatures such as power consumption, electromagnetic (EM) radiation, light emissions, and acoustic emanations. Exploiting these side channels significantly reduces the attacker’s search space. In recent years, physical...

2024/1286 (PDF) Last updated: 2024-08-15
Towards a Tightly Secure Signature in Multi-User Setting with Corruptions Based on Search Assumptions
Hirofumi Yoshioka, Wakaha Ogata, Keitaro Hashimoto
Foundations

This paper is a report on how we tackled constructing a digital signature scheme whose multi-user security with corruption can be tightly reduced to search assumptions. We fail to (dis)prove the statement but obtain the following new results: - We reveal two new properties of signature schemes whose security cannot be tightly reduced to standard assumptions. - We construct a new signature scheme. Its multi-user security with corruption is reduced to the CDH assumption (in the ROM), and...

2024/1283 (PDF) Last updated: 2024-08-14
Password-authenticated Cryptography from Consumable Tokens
Ghada Almashaqbeh
Cryptographic protocols

Passwords are widely adopted for user authentication in practice, which led to the question of whether we can bootstrap a strongly-secure setting based on them. Historically, this has been extensively studied for key exchange; bootstrap from a low-entropy password to a high entropy key securing the communication. Other instances include digital lockers, signatures, secret sharing, and encryption. Motivated by a recent work on consumable tokens (Almashaqbeh et al., Eurocrypt 2022), we...

2024/1262 (PDF) Last updated: 2024-08-09
Dilithium-Based Verifiable Timed Signature Scheme
Erkan Uslu, Oğuz Yayla
Cryptographic protocols

Verifiable Timed Signatures (VTS) are cryptographic constructs that enable obtaining a signature at a specific time in the future and provide evidence that the signature is legitimate. This framework particularly finds utility in applications such as payment channel networks, multiparty signing operations, or multiparty computation, especially within blockchain architectures. Currently, VTS schemes are based on signature algorithms such as BLS signature, Schnorr signature, and ECDSA. These...

2024/1253 (PDF) Last updated: 2024-08-08
FELIX (XGCD for FALCON): FPGA-based Scalable and Lightweight Accelerator for Large Integer Extended GCD
Sam Coulon, Tianyou Bao, Jiafeng Xie
Implementation

The Extended Greatest Common Divisor (XGCD) computation is a critical component in various cryptographic applications and algorithms, including both pre- and post-quantum cryptosystems. In addition to computing the greatest common divisor (GCD) of two integers, the XGCD also produces Bezout coefficients $b_a$ and $b_b$ which satisfy $\mathrm{GCD}(a,b) = a\times b_a + b\times b_b$. In particular, computing the XGCD for large integers is of significant interest. Most recently, XGCD computation...

2024/1223 (PDF) Last updated: 2024-10-03
A short-list of pairing-friendly curves resistant to the Special TNFS algorithm at the 192-bit security level
Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic
Implementation

For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...

2024/1206 (PDF) Last updated: 2024-07-26
Applying Post-Quantum Cryptography Algorithms to a DLT-Based CBDC Infrastructure: Comparative and Feasibility Analysis
Daniel de Haro Moraes, Joao Paulo Aragao Pereira, Bruno Estolano Grossi, Gustavo Mirapalheta, George Marcel Monteiro Arcuri Smetana, Wesley Rodrigues, Courtnay Nery Guimarães Jr., Bruno Domingues, Fábio Saito, Marcos Simplício
Implementation

This article presents an innovative project for a Central Bank Digital Currency (CBDC) infrastructure. Focusing on security and reliability, the proposed architecture: (1) employs post-quantum cryptography (PQC) algorithms for long-term security, even against attackers with access to cryptographically-relevant quantum computers; (2) can be integrated with a Trusted Execution Environment (TEE) to safeguard the confidentiality of transaction contents as they are processed by third-parties; and...

2024/1122 (PDF) Last updated: 2024-07-09
Finding Bugs and Features Using Cryptographically-Informed Functional Testing
Giacomo Fenzi, Jan Gilcher, Fernando Virdia
Implementation

In 2018, Mouha et al. (IEEE Trans. Reliability, 2018) performed a post-mortem investigation of the correctness of reference implementations submitted to the SHA3 competition run by NIST, finding previously unidentified bugs in a significant portion of them, including two of the five finalists. Their innovative approach allowed them to identify the presence of such bugs in a black-box manner, by searching for counterexamples to expected cryptographic properties of the implementations under...

2024/1121 (PDF) Last updated: 2024-07-09
Implementation and Performance Evaluation of Elliptic Curve Cryptography over SECP256R1 on STM32 Microprocessor
Onur İşler
Implementation

The use of Internet of Things (IoT) devices in embedded systems has become increasingly popular with advancing technologies. These devices become vulnerable to cyber attacks as they gain popularity. The cryptographic operations performed for the purpose of protection against cyber attacks are crucial to yield fast results in open networks and not slow down network traffic. Therefore, to enhance communication security, studies have been conducted in the literature on using asymmetric...

2024/1100 (PDF) Last updated: 2024-09-10
Unforgeability of Blind Schnorr in the Limited Concurrency Setting
Franklin Harding, Jiayu Xu
Public-key cryptography

Blind signature schemes enable a user to obtain a digital signature on a message from a signer without revealing the message itself. Among the most fundamental examples of such a scheme is blind Schnorr, but recent results show that it does not satisfy the standard notion of security against malicious users, One-More Unforgeability (OMUF), as it is vulnerable to the ROS attack. However, blind Schnorr does satisfy the weaker notion of sequential OMUF, in which only one signing session is open...

2024/1066 (PDF) Last updated: 2024-07-01
VerITAS: Verifying Image Transformations at Scale
Trisha Datta, Binyi Chen, Dan Boneh
Applications

Verifying image provenance has become an important topic, especially in the realm of news media. To address this issue, the Coalition for Content Provenance and Authenticity (C2PA) developed a standard to verify image provenance that relies on digital signatures produced by cameras. However, photos are usually edited before being published, and a signature on an original photo cannot be verified given only the published edited image. In this work, we describe VerITAS, a system that uses...

2024/1055 (PDF) Last updated: 2024-06-28
Enhancing Local Verification: Aggregate and Multi-Signature Schemes
Ahmet Ramazan Ağırtaş, Neslihan Yaman Gökce, Oğuz Yayla
Cryptographic protocols

An aggregate signature scheme is a digital signature protocol that enables the aggregation of multiple signatures. Given n signatures on n distinct messages from n different users, it is possible to combine all these signatures into a single, concise signature. This single signature, along with the n original messages, convinces the verifier that the n users indeed signed their respective n original messages. However, the verifier must have access to all the original messages to perform the...

2024/1051 (PDF) Last updated: 2024-09-13
Adaptor Signatures: New Security Definition and A Generic Construction for NP Relations
Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
Public-key cryptography

An adaptor signatures (AS) scheme is an extension of digital signatures that allows the signer to generate a pre-signature for an instance of a hard relation. This pre-signature can later be adapted to a full signature with a corresponding witness. Meanwhile, the signer can extract a witness from both the pre-signature and the signature. AS have recently garnered more attention due to its scalability and interoperability. Dai et al. [INDOCRYPT 2022] proved that AS can be constructed for any...

2024/1030 (PDF) Last updated: 2024-06-26
GRASP: Accelerating Hash-based PQC Performance on GPU Parallel Architecture
Yijing Ning, Jiankuo Dong, Jingqiang Lin, Fangyu Zheng, Yu Fu, Zhenjiang Dong, Fu Xiao
Implementation

$SPHINCS^+$, one of the Post-Quantum Cryptography Digital Signature Algorithms (PQC-DSA) selected by NIST in the third round, features very short public and private key lengths but faces significant performance challenges compared to other post-quantum cryptographic schemes, limiting its suitability for real-world applications. To address these challenges, we propose the GPU-based paRallel Accelerated $SPHINCS^+$ (GRASP), which leverages GPU technology to enhance the efficiency of...

2024/1019 (PDF) Last updated: 2024-06-24
Exploiting Clock-Slew Dependent Variability in CMOS Digital Circuits Towards Power and EM SCA Resilience
Archisman Ghosh, Md. Abdur Rahman, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications

Mathematically secured cryptographic implementations leak critical information in terms of power, EM emanations, etc. Several circuit-level countermeasures are proposed to hinder side channel leakage at the source. Circuit-level countermeasures (e.g., IVR, STELLAR, WDDL, etc) are often preferred as they are generic and have low overhead. They either dither the voltage randomly or attenuate the meaningful signature at $V_{DD}$ port. Although any digital implementation has two generic ports,...

2024/1004 (PDF) Last updated: 2024-11-01
Relaxed Vector Commitment for Shorter Signatures
Seongkwang Kim, Byeonghak Lee, Mincheol Son
Public-key cryptography

MPC-in-the-Head (MPCitH) has recently gained traction as a foundation for post-quantum signature schemes, offering robust security without trapdoors. Despite its strong security profile, MPCitH-based schemes suffer from high computational overhead and large signature sizes, limiting their practical application. This work addresses these inefficiencies by relaxing vector commitments within MPCitH-based schemes. We introduce the concept of vector semi-commitment, which relaxes the binding...

2024/953 (PDF) Last updated: 2024-11-13
MixBuy: Contingent Payment in the Presence of Coin Mixers
Diego Castejon-Molina, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez
Applications

A contingent payment protocol involves two mutually distrustful parties, a buyer and a seller, operating on the same blockchain, and a digital product, whose ownership is not tracked on a blockchain (e.g. a digital book). The buyer holds coins on the blockchain and transfers them to the seller in exchange for the product. However, if the blockchain does not hide transaction details, any observer can learn that a buyer purchased some product from a seller. In this work, we take...

2024/945 (PDF) Last updated: 2024-06-12
Quantum-Safe Public Key Blinding from MPC-in-the-Head Signature Schemes
Sathvika Balumuri, Edward Eaton, Philippe Lamontagne
Public-key cryptography

Key blinding produces pseudonymous digital identities by rerandomizing public keys of a digital signature scheme. It is used in anonymous networks to provide the seemingly contradictory goals of anonymity and authentication. Current key blinding schemes are based on the discrete log assumption. Eaton, Stebila and Stracovsky (LATINCRYPT 2021) proposed the first key blinding schemes from lattice assumptions. However, the large public keys and lack of QROM security means they are not ready to...

2024/931 (PDF) Last updated: 2024-10-14
Multi-Hop Multi-Key Homomorphic Signatures with Context Hiding from Standard Assumptions
Abtin Afshar, Jiaqi Cheng, Rishab Goyal
Public-key cryptography

Fully homomorphic signatures are a significant strengthening of digital signatures, enabling computations on \emph{secretly} signed data. Today, we have multiple approaches to design fully homomorphic signatures such as from lattices, or succinct functional commitments, or indistinguishability obfuscation, or mutable batch arguments. Unfortunately, all existing constructions for homomorphic signatures suffer from one or more limitations. We do not have homomorphic signatures with features...

2024/904 (PDF) Last updated: 2024-06-06
On round elimination for special-sound multi-round identification and the generality of the hypercube for MPCitH
Andreas Hülsing, David Joseph, Christian Majenz, Anand Kumar Narayanan
Public-key cryptography

A popular way to build post-quantum signature schemes is by first constructing an identification scheme (IDS) and applying the Fiat-Shamir transform to it. In this work we tackle two open questions related to the general applicability of techniques around this approach that together allow for efficient post-quantum signatures with optimal security bounds in the QROM. First we consider a recent work by Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, and Yue (Asiacrypt'23) that showed...

2024/884 (PDF) Last updated: 2024-06-03
Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Proofs
Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, Giovanni Tognolini
Foundations

Interactive proofs are a cornerstone of modern cryptography and as such used in many areas, from digital signatures to multy-party computation. Often the knowledge error $\kappa$ of an interactive proof is not small enough, and thus needs to be reduced. This is usually achieved by repeating the interactive proof in parallel t times. Recently, it was shown that parallel repetition of any $(k_1, \ldots , k_\mu)$-special-sound multi-round public-coin interactive proof reduces the knowledge...

2024/846 (PDF) Last updated: 2024-05-29
Distributed Asynchronous Remote Key Generation
Mark Manulis, Hugo Nartz
Cryptographic protocols

Asynchronous Remote Key Generation (ARKG) is a primitive introduced by Frymann et al. at ACM CCS 2020. It enables a sender to generate a new public key $pk'$ for a receiver ensuring only it can, at a later time, compute the corresponding private key sk'. These key pairs are indistinguishable from freshly generated ones and can be used in various public-key cryptosystems such as digital signatures and public-key encryption. ARKG has been explored for applications in WebAuthn credential backup...

2024/793 (PDF) Last updated: 2024-05-22
Hide-and-Seek and the Non-Resignability of the BUFF Transform
Jelle Don, Serge Fehr, Yu-Hsuan Huang, Jyun-Jie Liao, Patrick Struck
Public-key cryptography

The BUFF transform, due to Cremers et al. (S&P'21), is a generic transformation for digital signature scheme, with the purpose of obtaining additional security guarantees beyond unforgeability: exclusive ownership, message-bound signatures, and non-resignability. Non-resignability (which essentially challenges an adversary to re-sign an unknown message for which it only obtains the signature) turned out to be a delicate matter, as recently Don et al. (CRYPTO'24) showed that the initial...

2024/788 (PDF) Last updated: 2024-05-22
A Fault-Resistant NTT by Polynomial Evaluation and Interpolation
Sven Bauer, Fabrizio De Santis, Kristjane Koleci, Anita Aghaie

In computer arithmetic operations, the Number Theoretic Transform (NTT) plays a significant role in the efficient implementation of cyclic and nega-cyclic convolutions with the application of multiplying large integers and large degree polynomials. Multiplying polynomials is a common operation in lattice-based cryptography. Hence, the NTT is a core component of several lattice-based cryptographic algorithms. Two well-known examples are the key encapsulation mechanism Kyber and the...

2024/773 (PDF) Last updated: 2024-10-13
SQIPrime: A dimension 2 variant of SQISignHD with non-smooth challenge isogenies
Max Duparc, Tako Boris Fouotsa
Public-key cryptography

We introduce SQIPrime, a post-quantum digital signature scheme based on the Deuring correspondence and Kani's Lemma. Compared to its predecessors that are SQISign and especially SQISignHD, SQIPrime further expands the use of high dimensional isogenies, already in use in the verification in SQISignHD, to all its subroutines. In doing so, it no longer relies on smooth degree isogenies (of dimension 1). Intriguingly, this includes the challenge isogeny which is also a non-smooth degree...

2024/748 (PDF) Last updated: 2024-05-16
PERK: Compact Signature Scheme Based on a New Variant of the Permuted Kernel Problem
Slim Bettaieb, Loïc Bidoux, Victor Dyseryn, Andre Esser, Philippe Gaborit, Mukul Kulkarni, Marco Palumbi
Public-key cryptography

In this work we introduce PERK a compact digital signature scheme based on the hardness of a new variant of the Permuted Kernel Problem (PKP). PERK achieves the smallest signature sizes for any PKP-based scheme for NIST category I security with 6 kB, while obtaining competitive signing and verification timings. PERK also compares well with the general state-of-the-art. To substantiate those claims we provide an optimized constant-time AVX2 implementation, a detailed performance analysis and...

2024/701 (PDF) Last updated: 2024-05-07
Quantum Unpredictability
Tomoyuki Morimae, Shogo Yamada, Takashi Yamakawa
Foundations

Unpredictable functions (UPFs) play essential roles in classical cryptography, including message authentication codes (MACs) and digital signatures. In this paper, we introduce a quantum analog of UPFs, which we call unpredictable state generators (UPSGs). UPSGs are implied by pseudorandom function-like states generators (PRFSs), which are a quantum analog of pseudorandom functions (PRFs), and therefore UPSGs could exist even if one-way functions do not exist, similar to other recently...

2024/679 (PDF) Last updated: 2024-11-05
Isotropic Quadratic Forms, Diophantine equations and Digital Signatures, DEFIv2
Martin Feussner, Igor Semaev
Public-key cryptography

This work introduces DEFIv2 - an efficient hash-and-sign digital signature scheme based on isotropic quadratic forms over a commutative ring of characteristic 0. The form is public, but the construction is a trapdoor that depends on the scheme's private key. For polynomial rings over integers and rings of integers of algebraic number fields, the cryptanalysis is reducible to solving a quadratic Diophantine equation over the ring or, equivalently, to solving a system of quadratic Diophantine...

2024/677 (PDF) Last updated: 2024-06-30
Asynchronous Consensus without Trusted Setup or Public-Key Cryptography
Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, Victor Shoup
Cryptographic protocols

Byzantine consensus is a fundamental building block in distributed cryptographic problems. Despite decades of research, most existing asynchronous consensus protocols require a strong trusted setup and expensive public-key cryptography. In this paper, we study asynchronous Byzantine consensus protocols that do not rely on a trusted setup and do not use public-key cryptography such as digital signatures. We give an Asynchronous Common Subset (ACS) protocol whose security is only based on...

2024/652 Last updated: 2024-05-08
Compact and Secure Zero-Knowledge Proofs for Quantum-Resistant Cryptography from Modular Lattice Innovations
Samuel Lavery
Public-key cryptography

This paper presents a comprehensive security analysis of the Adh zero-knowledge proof system, a novel lattice-based, quantum-resistant proof of possession system. The Adh system offers compact key and proof sizes, making it suitable for real-world digital signature and public key agreement protocols. We explore its security by reducing it to the hardness of the Module-ISIS problem and introduce three new variants: Module-ISIS+, Module-ISIS*, and Module-ISIS**. These constructions enhance...

2024/596 (PDF) Last updated: 2024-07-25
Cryptanalysis of signature schemes based on the root extraction problem over braid group
Djimnaibeye Sidoine, Guy Mobouale Wamba, Abiodoun Clement Hounkpevi, Tieudjo Daniel, Djiby Sow
Attacks and cryptanalysis

Cumplido, María et al. have recently shown that the Wang-Hu digital signature is not secure and has presented a potential attack on the root extraction problem. The effectiveness of generic attacks on solving this problem for braids is still uncertain and it is unknown if it is possible to create braids that require exponential time to solve these problems. In 2023, Lin and al. has proposed a post-quantum signature scheme similar to the Wang-Hu scheme that is proven to be able to withstand...

2024/590 (PDF) Last updated: 2024-04-16
Revisiting the Security of Fiat-Shamir Signature Schemes under Superposition Attacks
Quan Yuan, Chao Sun, Tsuyoshi Takagi
Public-key cryptography

The Fiat-Shamir transformation is a widely employed technique in constructing signature schemes, known as Fiat-Shamir signature schemes (FS-SIG), derived from secure identification (ID) schemes. However, the existing security proof only takes into account classical signing queries and does not consider superposition attacks, where the signing oracle is quantum-accessible to the adversaries. Alagic et al. proposed a security model called blind unforgeability (BUF, Eurocrypt'20), regarded as a...

2024/588 (PDF) Last updated: 2024-04-16
Digital Signatures for Authenticating Compressed JPEG Images
Simon Erfurth
Applications

We construct a digital signature scheme for images that allows the image to be compressed without invalidating the signature. More specifically, given a JPEG image signed with our signature scheme, a third party can compress the image using JPEG compression, and, as long as the quantization tables only include powers of two, derive a valid signature for the compressed image, without access to the secret signing key, and without interaction with the signer. Our scheme is constructed using a...

2024/561 (PDF) Last updated: 2024-04-23
SQIAsignHD: SQIsignHD Adaptor Signature
Farzin Renan, Péter Kutas
Public-key cryptography

Adaptor signatures can be viewed as a generalized form of the standard digital signature schemes where a secret randomness is hidden within a signature. Adaptor signatures are a recent cryptographic primitive and are becoming an important tool for blockchain applications such as cryptocurrencies to reduce on-chain costs, improve fungibility, and contribute to off-chain forms of payment in payment-channel networks, payment-channel hubs, and atomic swaps. However, currently used adaptor...

2024/495 (PDF) Last updated: 2024-07-03
Reducing Signature Size of Matrix-code-based Signature Schemes
Tung Chou, Ruben Niederhagen, Lars Ran, Simona Samardjiska
Cryptographic protocols

This paper shows novel techniques to reduce the signature size of the code-based signature schemes MEDS and ALTEQ, by a large factor. For both schemes, the signature size is dominated by the responses for rounds with nonzero challenges, and we reduce the signature size by reducing the size of these responses. For MEDS, each of the responses consists of $m^2 + n^2$ field elements,while in our new protocol each response consists of only $2k$ ($k$ is usually chosen to be close to $m$ and $n$)...

2024/491 (PDF) Last updated: 2024-03-27
Updatable Policy-Compliant Signatures
Christian Badertscher, Monosij Maitra, Christian Matt, Hendrik Waldner
Cryptographic protocols

Policy-compliant signatures (PCS) are a recently introduced primitive by Badertscher et al. [TCC 2021] in which a central authority distributes secret and public keys associated with sets of attributes (e.g., nationality, affiliation with a specific department, or age) to its users. The authority also enforces a policy determining which senders can sign messages for which receivers based on a joint check of their attributes. For example, senders and receivers must have the same nationality,...

2024/490 (PDF) Last updated: 2024-03-27
One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures
Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, Peter Scholl
Cryptographic protocols

The use of MPC-in-the-Head (MPCitH)-based zero-knowledge proofs of knowledge (ZKPoK) to prove knowledge of a preimage of a one-way function (OWF) is a popular approach towards constructing efficient post-quantum digital signatures. Starting with the Picnic signature scheme, many optimized MPCitH signatures using a variety of (candidate) OWFs have been proposed. Recently, Baum et al. (CRYPTO 2023) showed a fundamental improvement to MPCitH, called VOLE-in-the-Head (VOLEitH), which can...

2024/473 (PDF) Last updated: 2024-03-25
Extremely Simple (Almost) Fail-Stop ECDSA Signatures
Mario Yaksetig
Public-key cryptography

Fail-stop signatures are digital signatures that allow a signer to prove that a specific forged signature is indeed a forgery. After such a proof is published, the system can be stopped. We introduce a new simple ECDSA fail-stop signature scheme. Our proposal is based on the minimal assumption that an adversary with a quantum computer is not able to break the (second) preimage resistance of a cryptographically-secure hash function. Our scheme is as efficient as traditional ECDSA, does not...

2024/465 (PDF) Last updated: 2024-05-10
Shorter VOLEitH Signature from Multivariate Quadratic
Dung Bui
Cryptographic protocols

The VOLE-in-the-Head paradigm, recently introduced by Baum et al. (Crypto 2023), is a compiler that uses SoftspokenOT (Crypto 2022) to transfer any VOLE-based designated verifier zero-knowledge protocol into a publicly verifiable zero-knowledge protocol. Together with the Fiat-Shamir transformation, a new digital signature scheme FAEST (faest.info) is proposed, and it outperforms all MPC-in-the-Head signatures. We propose a new candidate post-quantum signature scheme from the Multivariate...

2024/412 (PDF) Last updated: 2024-05-13
Quasi-Optimal Permutation Ranking and Applications to PERK
Slim Bettaieb, Alessandro Budroni, Marco Palumbi, Décio Luiz Gazzoni Filho
Applications

A ranking function for permutations maps every permutation of length $n$ to a unique integer between $0$ and $n!-1$. For permutations of size that are of interest in cryptographic applications, evaluating such a function requires multiple-precision arithmetic. This work introduces a quasi-optimal ranking technique that allows us to rank a permutation efficiently without needing a multiple-precision arithmetic library. We present experiments that show the computational advantage of our method...

2024/401 (PDF) Last updated: 2024-03-05
Plover: Masking-Friendly Hash-and-Sign Lattice Signatures
Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin Sakzad, Ron Steinfeld
Public-key cryptography

We introduce a toolkit for transforming lattice-based hash-and-sign signature schemes into masking-friendly signatures secure in the t-probing model. Until now, efficiently masking lattice-based hash-and-sign schemes has been an open problem, with unsuccessful attempts such as Mitaka. A first breakthrough was made in 2023 with the NIST PQC submission Raccoon, although it was not formally proven. Our main conceptual contribution is to realize that the same principles underlying Raccoon...

2024/382 (PDF) Last updated: 2024-03-01
Decentralized Access Control Infrastructure for Enterprise Digital Asset Management
Chirag Madaan, Rohan Agarwal, Vipul Saini, Ujjwal Kumar
Cryptographic protocols

With the rapidly evolving landscape of cryptography, blockchain technology has advanced to cater to diverse user requirements, leading to the emergence of a multi-chain ecosystem featuring various use cases characterized by distinct transaction speed and decentralization trade-offs. At the heart of this evolution lies digital signature schemes, responsible for safeguarding blockchain-based assets such as ECDSA, Schnorr, and EdDSA, among others. However, a critical gap exists in the...

2024/368 (PDF) Last updated: 2024-02-28
Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants
Anand Kumar Narayanan, Youming Qiao, Gang Tang
Attacks and cryptanalysis

We devise algorithms for finding equivalences of trilinear forms over finite fields modulo linear group actions. Our focus is on two problems under this umbrella, Matrix Code Equivalence (MCE) and Alternating Trilinear Form Equivalence (ATFE), since their hardness is the foundation of the NIST round-$1$ signature candidates MEDS and ALTEQ respectively. We present new algorithms for MCE and ATFE, which are further developments of the algorithms for polynomial isomorphism and alternating...

2024/364 (PDF) Last updated: 2024-03-07
Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem
Lars Ran, Simona Samardjiska, Monika Trimoska
Attacks and cryptanalysis

The Alternating Trilinear Form Equivalence (ATFE) problem was recently used by Tang et al. as a hardness assumption in the design of a Fiat-Shamir digital signature scheme ALTEQ. The scheme was submitted to the additional round for digital signatures of the NIST standardization process for post-quantum cryptography. ATFE is a hard equivalence problem known to be in the class of equivalence problems that includes, for instance, the Tensor Isomorphism (TI), Quadratic Maps Linear...

2024/357 (PDF) Last updated: 2024-02-28
Security analysis of the iMessage PQ3 protocol
Douglas Stebila
Cryptographic protocols

The iMessage PQ3 protocol is an end-to-end encrypted messaging protocol designed for exchanging data in long-lived sessions between two devices. It aims to provide classical and post-quantum confidentiality for forward secrecy and post-compromise secrecy, as well as classical authentication. Its initial authenticated key exchange is constructed from digital signatures plus elliptic curve Diffie–Hellman and post-quantum key exchanges; to derive per-message keys on an ongoing basis, it employs...

2024/337 (PDF) Last updated: 2024-06-14
Solving the Tensor Isomorphism Problem for special orbits with low rank points: Cryptanalysis and repair of an Asiacrypt 2023 commitment scheme
Valerie Gilchrist, Laurane Marco, Christophe Petit, Gang Tang
Attacks and cryptanalysis

The Tensor Isomorphism Problem (TIP) has been shown to be equivalent to the matrix code equivalence problem, making it an interesting candidate on which to build post-quantum cryptographic primitives. These hard problems have already been used in protocol development. One of these, MEDS, is currently in Round 1 of NIST's call for additional post-quantum digital signatures. In this work, we consider the TIP for a special class of tensors. The hardness of the decisional version of this...

2024/329 (PDF) Last updated: 2024-02-26
How to Validate a Verification?
Houda Ferradi
Public-key cryptography

This paper introduces \textsl{signature validation}, a primitive allowing any \underline{t}hird party $T$ (\underline{T}héodore) to verify that a \underline{v}erifier $V$ (\underline{V}adim) computationally verified a signature $s$ on a message $m$ issued by a \underline{s}igner $S$ (\underline{S}arah). A naive solution consists in sending by Sarah $x=\{m,\sigma_s\}$ where $\sigma_s$ is Sarah's signature on $m$ and have Vadim confirm reception by a signature $\sigma_v$ on $x$....

2024/321 (PDF) Last updated: 2024-07-22
Formal Verification of Emulated Floating-Point Arithmetic in Falcon
Vincent Hwang
Implementation

We show that there is a discrepancy between the emulated floating-point multiplication in the submission package of the digital signature Falcon and the claimed behavior. In particular, we show that some floating-point products with absolute values the smallest normal positive floating-point number are incorrectly zeroized. However, we show that the discrepancy doesn’t affect the complex fast Fourier transform in the signature generation of Falcon by modeling the floating-point addition,...

2024/319 (PDF) Last updated: 2024-02-24
On the cryptosystems based on two Eulerian transfor-mations defined over the commutative rings $Z_{2^s}, s>1$.
Vasyl Ustimenko
Cryptographic protocols

We suggest the family of ciphers s^E^n, n=2,3,.... with the space of plaintexts (Z*_{2^s})^n, s >1 such that the encryption map is the composition of kind G=G_1A_1G_2A_2 where A_i are the affine transformations from AGL_n(Z_{2^s}) preserving the variety (Z*_{2^s)}^n , Eulerian endomorphism G_i , i=1,2 of K[x_1, x_2,...., x_n] moves x_i to monomial term ϻ(x_1)^{d(1)}(x_2)^{d(2)}...(x_n)^{d(n)} , ϻϵ Z*_{2^s} and act on (Z*_{2^s})^n as bijective transformations. The cipher is...

2024/286 (PDF) Last updated: 2024-02-20
Efficient Zero-Knowledge Arguments and Digital Signatures via Sharing Conversion in the Head
Jules Maire, Damien Vergnaud
Cryptographic protocols

We present a novel technique within the MPC-in-the-Head framework, aiming to design efficient zero-knowledge protocols and digital signature schemes. The technique allows for the simultaneous use of additive and multiplicative sharings of secret information, enabling efficient proofs of linear and multiplicative relations. The applications of our technique are manifold. It is first applied to construct zero-knowledge arguments of knowledge for Double Discrete Logarithms (DDLP). The...

2024/277 (PDF) Last updated: 2024-02-19
Fault Attacks on UOV and Rainbow
Juliane Krämer, Mirjam Loiero
Attacks and cryptanalysis

Multivariate cryptography is one of the main candidates for creating post-quantum public key cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. The signature schemes UOV and Rainbow are two of the most promising and best studied multivariate schemes which have proven secure for more than a decade. However, so far the security of multivariate signature schemes towards physical attacks has not been appropriately assessed....

2024/244 (PDF) Last updated: 2024-09-24
Don’t Use It Twice! Solving Relaxed Linear Code Equivalence Problems
Alessandro Budroni, Jesús-Javier Chi-Domínguez, Giuseppe D'Alconzo, Antonio J. Di Scala, Mukul Kulkarni
Attacks and cryptanalysis

The Linear Code Equivalence (LCE) Problem has received increased attention in recent years due to its applicability in constructing efficient digital signatures. Notably, the LESS signature scheme based on LCE is under consideration for the NIST post-quantum standardization process, along with the MEDS signature scheme that relies on an extension of LCE to the rank metric, namely the Matrix Code Equivalence (MCE) Problem. Building upon these developments, a family of signatures with...

2024/241 (PDF) Last updated: 2024-05-31
Consecutive Adaptor Signature Scheme: From Two-Party to N-Party Settings
Kaisei Kajita, Go Ohtake, Tsuyoshi Takagi
Public-key cryptography

Adaptor signatures have attracted attention as a tool to address scalability and interoperability issues in blockchain applications. Adaptor signatures can be constructed by extending common digital signature schemes that both authenticate a message and disclose a secret witness to a specific party. In Asiacrypt 2021, Aumayr et al. formulated the two-party adaptor signature as an independent cryptographic primitive. In this study, we extend their adaptor signature formulation to $N$...

2024/238 (PDF) Last updated: 2024-11-12
A Single Trace Fault Injection Attack on Hedged CRYSTALS-Dilithium
Sönke Jendral
Attacks and cryptanalysis

CRYSTALS-Dilithium is a post-quantum secure digital signature algorithm currently being standardised by NIST. As a result, devices making use of CRYSTALS-Dilithium will soon become generally available and be deployed in various environments. It is thus important to assess the resistance of CRYSTALS-Dilithum implementations to physical attacks. In this paper, we present an attack on a CRYSTALS-Dilithium implementation in hedged mode in ARM Cortex-M4 using fault injection. Voltage glitching...

2024/214 (PDF) Last updated: 2024-06-13
Distributed Fiat-Shamir Transform: from Threshold Identification Protocols to Signatures
Michele Battagliola, Andrea Flamini
Public-key cryptography

The recent surge of distribute technologies caused an increasing interest towards threshold signature protocols, that peaked with the recent NIST First Call for Multi-Party Threshold Schemes. Since its introduction, the Fiat-Shamir Transform has been the most popular way to design standard digital signature schemes. Many threshold signature schemes are designed in a way that recalls the structure of digital signatures created using Fiat Shamir, by having the signers generate a common...

2024/208 Last updated: 2024-05-08
Asymmetric Cryptography from Number Theoretic Transformations
Samuel Lavery
Public-key cryptography

In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed...

2024/193 Last updated: 2024-04-25
MQ Does Not Reduce to TUOV
Laura Maddison
Attacks and cryptanalysis

The submission of the Triangular Unbalanced Oil and Vinegar (TUOV) digital signature scheme to the NIST competition in 2023 claims that if the Multivariate Quadratic (MQ) problem (with suitable parameters) is hard, then the TUOV problem must also be hard. We show why the proof fails and why the claimed theorem cannot be true in general.

2024/184 (PDF) Last updated: 2024-02-07
Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions
Rafael del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, Markku-Juhani Saarinen
Cryptographic protocols

Threshold signatures improve both availability and security of digital signatures by splitting the signing key into $N$ shares handed out to different parties. Later on, any subset of at least $T$ parties can cooperate to produce a signature on a given message. While threshold signatures have been extensively studied in the pre-quantum setting, they remain sparse from quantum-resilient assumptions. We present the first efficient lattice-based threshold signatures with signature size 13...

2024/174 (PDF) Last updated: 2024-02-07
QPP and HPPK: Unifying Non-Commutativity for Quantum-Secure Cryptography with Galois Permutation Group
Randy Kuang
Cryptographic protocols

In response to the evolving landscape of quantum computing and the heightened vulnerabilities in classical cryptographic systems, our paper introduces a comprehensive cryptographic framework. Building upon the pioneering work of Kuang et al., we present a unification of two innovative primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). By harnessing...

2024/150 (PDF) Last updated: 2024-02-02
SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on Learning With Errors
Samuel Stevens, Emily Wenger, Cathy Yuanchen Li, Niklas Nolte, Eshika Saxena, Francois Charton, Kristin Lauter
Attacks and cryptanalysis

Learning with Errors (LWE) is a hard math problem underlying post-quantum cryptography (PQC) systems for key exchange and digital signatures, recently standardized by NIST. Prior work [Wenger et al., 2022; Li et al., 2023a;b] proposed new machine learning (ML)-based attacks on LWE problems with small, sparse secrets, but these attacks require millions of LWE samples to train on and take days to recover secrets. We propose three key methods—better pre-processing, angular embeddings and model...

2024/145 (PDF) Last updated: 2024-02-01
Practical Batch Proofs of Exponentiation
Charlotte Hoffmann, Pavel Hubáček, Svetlana Ivanova
Cryptographic protocols

A Proof of Exponentiation (PoE) allows a prover to efficiently convince a verifier that $y=x^e$ in some group of unknown order. PoEs are the basis for practical constructions of Verifiable Delay Functions (VDFs), which, in turn, are important for various higher-level protocols in distributed computing. In applications such as distributed consensus, many PoEs are generated regularly, motivating protocols for secure aggregation of batches of statements into a few statements to improve the...

2024/138 (PDF) Last updated: 2024-01-31
Correction Fault Attacks on Randomized CRYSTALS-Dilithium
Elisabeth Krahmer, Peter Pessl, Georg Land, Tim Güneysu
Attacks and cryptanalysis

After NIST’s selection of Dilithium as the primary future standard for quantum-secure digital signatures, increased efforts to understand its implementation security properties are required to enable widespread adoption on embedded devices. Concretely, there are still many open questions regarding the susceptibility of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized (or hedged) signing mode, which, likely due to devastating implementation attacks on the...

2024/128 (PDF) Last updated: 2024-01-29
Non-Binding (Designated Verifier) Signature
Ehsan Ebrahimi
Cryptographic protocols

We argue that there are some scenarios in which plausible deniability might be desired for a digital signature scheme. For instance, the non-repudiation property of conventional signature schemes is problematic in designing an Instant Messaging system (WPES 2004). In this paper, we formally define a non-binding signature scheme in which the Signer is able to disavow her own signature if she wants, but, the Verifier is not able to dispute a signature generated by the Signer. That is,...

2024/097 (PDF) Last updated: 2024-01-22
Improved All-but-One Vector Commitment with Applications to Post-Quantum Signatures
Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem
Public-key cryptography

Post-quantum digital signature schemes have recently received increased attention due to the NIST standardization project for additional signatures. MPC-in-the-Head and VOLE-in-the-Head are general techniques for constructing such signatures from zero-knowledge proof systems. A common theme between the two is an all-but-one vector commitment scheme which internally uses GGM trees. This primitive is responsible for a significant part of the computational time during signing and...

2024/091 (PDF) Last updated: 2024-01-20
On historical Multivariate Cryptosystems and their restorations as instruments of Post-Quantum Cryptography
Vasyl Ustimenko
Secret-key cryptography

The paper presents a short survey of the History of Multivariate Cryptography together with the usage of old broken multivariate digital signatures in the new protocol based cryptosystems constructed in terms of Noncommutative Cryptography. The general schemes of New cryptosystems is a combinations of Eulerian maps and quadratic maps with their trapdoor accelerators, which are pieces of information such than the knowledge of them allow to compute the reimages in a polynomial time. These...

2024/088 (PDF) Last updated: 2024-07-04
Enabling PERK and other MPC-in-the-Head Signatures on Resource-Constrained Devices
Slim Bettaieb, Loïc Bidoux, Alessandro Budroni, Marco Palumbi, Lucas Pandolfo Perin
Implementation

One category of the digital signatures submitted to the NIST Post-Quantum Cryptography Standardization Process for Additional Digital Signature Schemes comprises proposals constructed leveraging the MPC-in-the-Head (MPCitH) paradigm. Typically, this framework is characterized by the computation and storage in sequence of large data structures both in signing and verification algorithms, resulting in heavy memory consumption. While some research on the efficiency of these schemes on...

2024/069 (PDF) Last updated: 2024-01-16
SDitH in Hardware
Sanjay Deshpande, James Howe, Jakub Szefer, Dongze Yue
Implementation

This work presents the first hardware realisation of the Syndrome-Decoding-in-the-Head (SDitH) signature scheme, which is a candidate in the NIST PQC process for standardising post-quantum secure digital signature schemes. SDitH's hardness is based on conservative code-based assumptions, and it uses the Multi-Party-Computation-in-the-Head (MPCitH) construction. This is the first hardware design of a code-based signature scheme based on traditional decoding problems and only the second for...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.