1360 results sorted by ID
Single Trace Side-Channel Attack on the MPC-in-the-Head Framework
Julie Godard, Nicolas Aragon, Philippe Gaborit, Antoine Loiseau, Julien Maillard
Attacks and cryptanalysis
In this paper, we present the first single trace side-channel attack that targets the MPC-in-the-Head (MPCitH) framework based on threshold secret sharing, also known as Threshold Computation in the Head (TCitH) in its original version. This MPCitH framework can be found in 5 of the 14 digital signatures schemes in the recent second round of the National Institute of Standards and Technology (NIST) call for digital signatures. In this work, we start by highlighting a side-channel...
Unbounded Leakage-Resilient Encryption and Signatures
Alper Çakan, Vipul Goyal
Foundations
Given the devastating security compromises caused by side-channel attacks on existing classical systems, can we store our private data encoded as a quantum state so that they can be kept private in the face of arbitrary side-channel attacks?
The unclonable nature of quantum information allows us to build various quantum protection schemes for cryptographic information such as secret keys. Examples of quantum protection notions include copy-protection, secure leasing, and finally,...
ARCHER: Architecture-Level Simulator for Side-Channel Analysis in RISC-V Processors
Asmita Adhikary, Abraham J. Basurto Becerra, Lejla Batina, Ileana Buhan, Durba Chatterjee, Senna van Hoek, Eloi Sanfelix Gonzalez
Applications
Side-channel attacks pose a serious risk to cryptographic implementations, particularly in embedded systems. While current methods, such as test vector leakage assessment (TVLA), can identify leakage points, they do not provide insights into their root causes. We propose ARCHER, an architecture-level tool designed to perform side-channel analysis and root cause identification for software cryptographic implementations on RISC-V processors. ARCHER has two main components: (1) Side-Channel...
Tweakable ForkCipher from Ideal Block Cipher
Sougata Mandal
Secret-key cryptography
In ASIACRYPT 2019, Andreeva et al. introduced a new symmetric key primitive called the $\textit{forkcipher}$, designed for lightweight applications handling short messages. A forkcipher is a keyed function with a public tweak, featuring fixed-length input and fixed-length (expanding) output. They also proposed a specific forkcipher, ForkSkinny, based on the tweakable block cipher SKINNY, and its security was evaluated through cryptanalysis. Since then, several efficient AEAD and MAC schemes...
Fully Encrypted Machine Learning Protocol using Functional Encryption
Seungwan Hong, Jiseung Kim, Changmin Lee, Minhye Seo
Cryptographic protocols
As privacy concerns have arisen in machine learning, privacy-preserving machine learning (PPML) has received significant attention. Fully homomorphic encryption (FHE) and secure multi-party computation (MPC) are representative building blocks for PPML. However, in PPML protocols based on FHE and MPC, interaction between the client (who provides encrypted input data) and the evaluator (who performs the computation) is essential to obtain the final result in plaintext.
Functional encryption...
(In)Security of Threshold Fully Homomorphic Encryption based on Shamir Secret Sharing
Wonhee Cho, Jiseung Kim, Changmin Lee
Attacks and cryptanalysis
Boneh et al. (CRYPTO'18) proposed two $t$-out-of-$N$ threshold fully homomorphic encryption ($\sf TFHE$) schemes based on Shamir secret sharing scheme and $\{0,1\}$-linear secret sharing scheme. They demonstrated the simulation security, ensuring no information leakage during partial or final decryption. This breakthrough allows any scheme to be converted into a threshold scheme by using $\sf TFHE$.
We propose two polynomial time algorithms to break the simulation security of...
Access-Controlled Inner Product Function-Revealing Encryption
Ojaswi Acharya, Weiqi Feng, Roman Langrehr, Adam O'Neill
Cryptographic protocols
We extend the concept of access control for functional encryption, introduced by Abdalla et al. (ASIACRYPT 2020), to function-revealing encryption (Joy and Passelègue, SCN 2018). Here “access control” means that function evaluation is only possible when a specified access policy is met. Specifically, we introduce access-controlled inner product function-revealing encryption (AC-IPFRE) and give two applications.
On the theoretical side, we use AC-IPFRE to show that function-hiding...
Single-trace side-channel attacks on MAYO exploiting leaky modular multiplication
Sönke Jendral, Elena Dubrova
Attacks and cryptanalysis
In response to the quantum threat, new post-quantum cryptographic algorithms will soon be deployed to replace existing public-key schemes. MAYO is a quantum-resistant digital signature scheme whose small keys and signatures make it suitable for widespread adoption, including on embedded platforms with limited security resources. This paper demonstrates two single-trace side-channel attacks on a MAYO implementation in ARM Cortex-M4 that recover a secret key with probabilities of 99.9% and...
A Query Reconstruction Attack on the Chase-Shen Substring-Searchable Symmetric Encryption Scheme
Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis
Attacks and cryptanalysis
Searchable symmetric encryption (SSE) enables queries over symmetrically encrypted databases. To achieve practical efficiency, SSE schemes incur a certain amount of leakage; however, this leads to the possibility of leakage cryptanalysis, i.e., cryptanalytic attacks that exploit the leakage from the target SSE scheme to subvert its data and query privacy guarantees. Leakage cryptanalysis has been widely studied in the context of SSE schemes supporting either keyword queries or range queries,...
Classic McEliece Hardware Implementation with Enhanced Side-Channel and Fault Resistance
Peizhou Gan, Prasanna Ravi, Kamal Raj, Anubhab Baksi, Anupam Chattopadhyay
Implementation
In this work, we propose the first hardware implementation of Classic McEliece protected with countermeasures against Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA). Classic Mceliece is one of the leading candidates for Key Encapsulation Mechanisms (KEMs) in the ongoing round 4 of the NIST standardization process for post-quantum cryptography. In particular, we implement a range of generic countermeasures against SCA and FIA, particularly protected the vulnerable operations...
Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD: More Applications of Pseudo-Random Injections
Mustafa Khairallah
Secret-key cryptography
Pseudo-Random Injections (PRIs) have had several applications in symmetric-key cryptography, such as in the idealization of Authenticated Encryption with Associated Data (AEAD) schemes, building robust AEAD, and, recently, in converting a committing AEAD scheme into a succinctly committing AEAD scheme. In Crypto 2024, Bellare and Hoang showed that if an AEAD scheme is already committing, it can be transformed into a succinctly committed scheme by encrypting part of the plaintext using a PRI....
FLock: Robust and Privacy-Preserving Federated Learning based on Practical Blockchain State Channels
Ruonan Chen, Ye Dong, Yizhong Liu, Tingyu Fan, Dawei Li, Zhenyu Guan, Jianwei Liu, Jianying Zhou
Applications
\textit{Federated Learning} (FL) is a distributed machine learning paradigm that allows multiple clients to train models collaboratively without sharing local data. Numerous works have explored security and privacy protection in FL, as well as its integration with blockchain technology. However, existing FL works still face critical issues. \romannumeral1) It is difficult to achieving \textit{poisoning robustness} and \textit{data privacy} while ensuring high \textit{model accuracy}....
Towards Explainable Side-Channel Leakage: Unveiling the Secrets of Microarchitecture
Ischa Stork, Vipul Arora, Łukasz Chmielewski, Ileana Buhan
Implementation
We explore the use of microbenchmarks, small assembly code snippets, to detect microarchitectural side-channel leakage in CPU implementations. Specifically, we investigate the effectiveness of microbenchmarks in diagnosing the predisposition to side-channel leaks in two commonly used RISC-V cores: Picorv32 and Ibex. We propose a new framework that involves diagnosing side-channel leaks, identifying leakage points, and constructing leakage profiles to understand the underlying causes. We...
PRIME: Differentially Private Distributed Mean Estimation with Malicious Security
Laasya Bangalore, Albert Cheu, Muthuramakrishnan Venkitasubramaniam
Cryptographic protocols
Distributed mean estimation (DME) is a fundamental and important task as it serves as a subroutine in convex optimization, aggregate statistics, and, more generally, federated learning. The inputs for distributed mean estimation (DME) are provided by clients (such as mobile devices), and these inputs often contain sensitive information. Thus, protecting privacy and mitigating the influence of malicious adversaries are critical concerns in DME. A surge of recent works has focused on building...
Subliminal Encrypted Multi-Maps and Black-Box Leakage Absorption
Amine Bahi, Seny Kamara, Tarik Moataz, Guevara Noubir
Cryptographic protocols
We propose a dynamic, low-latency encrypted multi-map (EMM) that operates in two
modes: low-leakage mode, which reveals minimal information such as data
size, expected response length, and query arrival rate; and subliminal
mode, which reveals only the data size while hiding metadata including query
and update times, the number of operations executed, and even whether an
operation was executed at all---albeit at the cost of full correctness. We
achieve this by exploiting a tradeoff...
Full Key-Recovery Cubic-Time Template Attack on Classic McEliece Decapsulation
Vlad-Florin Drăgoi, Brice Colombier, Nicolas Vallet, Pierre-Louis Cayrel, Vincent Grosso
Attacks and cryptanalysis
Classic McEliece is one of the three code-based candidates in the fourth round of the NIST post-quantum cryptography standardization process in the Key Encapsulation Mechanism category. As such, its decapsulation algorithm is used to recover the session key associated with a ciphertext using the private key. In this article, we propose a new side-channel attack on the syndrome computation in the decapsulation algorithm that recovers the private key, which consists of the private Goppa...
Curve Forests: Transparent Zero-Knowledge Set Membership with Batching and Strong Security
Matteo Campanelli, Mathias Hall-Andersen, Simon Holmgaard Kamp
Cryptographic protocols
Zero-knowledge for set membership is a building block at the core of several privacy-aware applications, such as anonymous payments, credentials and whitelists.
We propose a new efficient construction for the batching variant of the problem, where a user intends to show knowledge of several elements (a batch) in a set without any leakage on the elements. Our construction is transparent—it does not requires a trusted setup—and based on Curve Trees by Campanelli, Hall-Andersen and Kamp...
Understanding Leakage in Searchable Encryption: a Quantitative Approach
Alexandra Boldyreva, Zichen Gui, Bogdan Warinschi
Foundations
Searchable encryption, or more generally, structured encryption, permits search over encrypted data. It is an important cryptographic tool for securing cloud storage. The standard security notion for structured encryption mandates that a protocol leaks nothing about the data or queries, except for some allowed leakage, defined by the leakage function. This is due to the fact that some leakage is unavoidable for efficient schemes. Unfortunately, it was shown by numerous works that even...
Bit t-SNI Secure Multiplication Gadget for Inner Product Masking
John Gaspoz, Siemen Dhooghe
Implementation
Masking is a sound countermeasure to protect against differential power analysis. Since the work by Balasch et al. in ASIACRYPT 2012, inner product masking has been explored as an alternative to the well known Boolean masking. In CARDIS 2017, Poussier et al. showed that inner product masking achieves higher-order security versus Boolean masking, for the same shared size, in the bit-probing model. Wang et al. in TCHES 2020 verified the inner product masking's security order amplification in...
Evaluating Leakage Attacks Against Relational Encrypted Search
Patrick Ehrler, Abdelkarim Kati, Thomas Schneider, Amos Treiber
Attacks and cryptanalysis
Encrypted Search Algorithms (ESAs) are a technique to encrypt data while the user can still search over it. ESAs can protect privacy and ensure security of sensitive data stored on a remote storage. Originally, ESAs were used in the context of documents that consist of keywords. The user encrypts the documents, sends them to a remote server and is still able to search for keywords, without exposing information about the plaintext. The idea of ESAs has also been applied to relational...
Functional Adaptor Signatures: Beyond All-or-Nothing Blockchain-based Payments
Nikhil Vanjani, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols
In scenarios where a seller holds sensitive data $x$, like employee / patient records or ecological data, and a buyer seeks to obtain an evaluation of specific function $f$ on this data, solutions in trustless digital environments like blockchain-based Web3 systems typically fall into two categories: (1) Smart contract-powered solutions and (2) cryptographic solutions leveraging tools such as adaptor signatures. The former approach offers atomic transactions where the buyer learns the...
The SMAesH dataset
Gaëtan Cassiers, Charles Momin
Implementation
Datasets of side-channel leakage measurements are widely used in research to develop and benchmarking side-channel attack and evaluation methodologies. Compared to using custom and/or one-off datasets, widely-used and publicly available datasets improve research reproducibility and comparability. Further, performing high-quality measurements requires specific equipment and skills, while also taking a significant amount of time. Therefore, using publicly available datasets lowers the barriers...
Depth Optimized Circuits for Lattice Based Voting with Large Candidate Sets
Oskar Goldhahn, Kristian Gjøsteen
Cryptographic protocols
Homomorphic encryption has long been used to build voting
schemes. Additively homomorphic encryption only allows simple count-
ing functions. Lattice-based fully (or somewhat) homomorphic encryp-
tion allows more general counting functions, but the required parameters
quickly become impractical if used naively. It is safe to leak information
during the counting function evaluation, as long as the information could
be derived from the public result. To exploit this observation, we...
Concretely Efficient Private Set Union via Circuit-based PSI
Gowri R Chandran, Thomas Schneider, Maximilian Stillger, Christian Weinert
Cryptographic protocols
Private set intersection (PSI) is a type of private set operation (PSO) for which concretely efficient linear-complexity protocols do exist.
However, the situation is currently less satisfactory for other relevant PSO problems such as private set union (PSU):
For PSU, the most promising protocols either rely entirely on computationally expensive public-key operations or suffer from substantial communication overhead.
In this work, we present the first PSU protocol that is mainly based...
Communication Efficient Secure and Private Multi-Party Deep Learning
Sankha Das, Sayak Ray Chowdhury, Nishanth Chandran, Divya Gupta, Satya Lokam, Rahul Sharma
Applications
Distributed training that enables multiple parties to jointly train
a model on their respective datasets is a promising approach to
address the challenges of large volumes of diverse data for training
modern machine learning models. However, this approach immedi-
ately raises security and privacy concerns; both about each party
wishing to protect its data from other parties during training and
preventing leakage of private information from the model after
training through various...
Providing Integrity for Authenticated Encryption in the Presence of Joint Faults and Leakage
Francesco Berti, Itamar Levi
Secret-key cryptography
Passive (leakage exploitation) and active (fault injection) physical attacks pose a significant threat to cryptographic schemes. Although leakage-resistant cryptography is well studied, there is little work on mode-level security in the presence of joint faults and leakage exploiting adversaries. In this paper, we focus on integrity for authenticated encryption (AE).
First, we point out that there is an inherent attack in the fault-resilience model presented at ToSC 2023. This shows how...
HierNet: A Hierarchical Deep Learning Model for SCA on Long Traces
Suvadeep Hajra, Debdeep Mukhopadhyay
Attacks and cryptanalysis
In Side-Channel Analysis (SCA), statistical or machine learning methods are employed to extract secret information from power or electromagnetic (EM) traces. In many practical scenarios, raw power/EM traces can span hundreds of thousands of features, with relevant leakages occurring over only a few small segments. Consequently, existing SCAs often select a small number of features before launching the attack, making their success highly dependent on the feasibility of feature selection....
On Multi-user Security of Lattice-based Signature under Adaptive Corruptions and Key Leakages
Masayuki Fukumitsu, Shingo Hasegawa
Public-key cryptography
We consider the multi-user security under the adaptive corruptions and key leakages ($\rm{MU^{c\&l}}$ security) for lattice-based signatures. Although there exists an $\rm{MU^{c\&l}}$ secure signature based on a number-theoretic assumption, or a leakage-resilient lattice-based signature in the single-user setting, $\rm{MU^{c\&l}}$ secure lattice-based signature is not known.
We examine the existing lattice-based signature schemes from the viewpoint of $\rm{MU^{c\&l}}$ security, and find...
Scalable Equi-Join Queries over Encrypted Database
Kai Du, Jianfeng Wang, Jiaojiao Wu, Yunling Wang
Cryptographic protocols
Secure join queries over encrypted databases, the most expressive class of SQL queries, have attracted extensive attention recently. The state-of-the-art JXT (Jutla et al. ASIACRYPT 2022) enables join queries on encrypted relational databases without pre-computing all possible joins. However, JXT can merely support join queries over two tables (in encrypted databases) with some high-entropy join attributes.
In this paper, we propose an equi-join query protocol over two tables dubbed JXT+,...
Cache Timing Leakages in Zero-Knowledge Protocols
Shibam Mukherjee, Christian Rechberger, Markus Schofnegger
Attacks and cryptanalysis
The area of modern zero-knowledge proof systems has seen a significant rise in popularity over the last couple of years, with new techniques and optimized constructions emerging on a regular basis.
As the field matures, the aspect of implementation attacks becomes more relevant, however side-channel attacks on zero-knowledge proof systems have seen surprisingly little treatment so far. In this paper we give an overview of potential attack vectors and show that some of the underlying...
DL-SITM: Deep Learning-Based See-in-the-Middle Attack on AES
Tomáš Gerlich, Jakub Breier, Pavel Sikora, Zdeněk Martinásek, Aron Gohr, Anubhab Baksi, Xiaolu Hou
Attacks and cryptanalysis
The see-in-the-middle (SITM) attack combines differential cryptanalysis and the ability to observe differential patterns in the side-channel leakage traces to reveal the secret key of SPN-based ciphers. While SITM presents a fresh perspective to side-channel analysis and allows attacks on deeper cipher rounds, there are practical difficulties that come with this method. First, one must realize a visual inspection of millions of power traces. Second, there is a strong requirement to reduce...
Password-Protected Key Retrieval with(out) HSM Protection
Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, Anja Lehmann
Cryptographic protocols
Password-protected key retrieval (PPKR) enables users to store and retrieve high-entropy keys from a server securely. The process is bootstrapped from a human-memorizable password only, addressing the challenge of how end-users can manage cryptographic key material. The core security requirement is protection against a corrupt server, which should not be able to learn the key or offline- attack it through the password protection. PPKR is deployed at a large scale with the WhatsApp Backup...
What Did Come Out of It? Analysis and Improvements of DIDComm Messaging
Christian Badertscher, Fabio Banfi, Jesus Diaz
Cryptographic protocols
Self-Sovereign Identity (SSI) empowers individuals and organizations with full control over their data. Decentralized identifiers (DIDs) are at its center, where a DID contains a collection of public keys associated with an entity, and further information to enable entities to engage via secure and private messaging across different platforms. A crucial stepping stone is DIDComm, a cryptographic communication layer that is in production with version 2. Due to its widespread and active...
Leakage-Resilience of Circuit Garbling
Ruiyang Li, Yiteng Sun, Chun Guo, Francois-Xavier Standaert, Weijia Wang, Xiao Wang
Secret-key cryptography
Due to the ubiquitous requirements and performance leap in the past decade, it has become feasible to execute garbling and secure computations in settings sensitive to side-channel attacks, including smartphones, IoTs and dedicated hardwares, and the possibilities have been demonstrated by recent works. To maintain security in the presence of a moderate amount of leaked information about internal secrets, we investigate {\it leakage-resilient garbling}. We augment the classical privacy,...
Authenticity in the Presence of Leakage using a Forkcipher
Francesco Berti, François-Xavier Standaert, Itamar Levi
Secret-key cryptography
Robust message authentication codes (MACs) and authenticated encryption (AE) schemes that provide authenticity in the presence of side-channel leakage are essential primitives. These constructions often rely on primitives designed for strong leakage protection, among others including the use of strong-unpredictable (tweakable) block-ciphers.
This paper extends the strong-unpredictability security definition to the versatile and new forkcipher primitive. We show how to construct secure and...
R-STELLAR: A Resilient Synthesizable Signature Attenuation SCA Protection on AES-256 with built-in Attack-on-Countermeasure Detection
Archisman Ghosh, Dong-Hyun Seo, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications
Side-channel attacks (SCAs) remain a significant threat to the security of cryptographic systems in modern embedded devices. Even mathematically secure cryptographic algorithms, when implemented in hardware, inadvertently leak information through physical side-channel signatures such as power consumption, electromagnetic (EM) radiation, light emissions, and acoustic emanations. Exploiting these side channels significantly reduces the attacker’s search space.
In recent years, physical...
LAMA: Leakage-Abuse Attacks Against Microsoft Always Encrypted
Ryan Seah, Daren Khu, Alexander Hoover, Ruth Ng
Attacks and cryptanalysis
Always Encrypted (AE) is a Microsoft SQL Server feature that allows clients to encrypt sensitive data inside client applications and ensures that the sensitive data is hidden from untrusted servers and database administrators. AE offers two column-encryption options: deterministic encryption (DET) and randomized encryption (RND). In this paper, we explore the security implications of using AE with both DET and
RND encryption modes by running Leakage Abuse Attacks (LAAs) against the system....
Robust but Relaxed Probing Model
Nicolai Müller, Amir Moradi
Applications
Masking has become a widely applied and heavily researched method to protect cryptographic implementations against SCA attacks. The success of masking is primarily attributed to its strong theoretical foundation enabling it to formally prove security by modeling physical properties through so-called probing models. Specifically, the robust $d$-probing model enables us to prove the security for arbitrarily masked hardware circuits, manually or with the assistance of automated tools, even when...
EMI Shielding for Use in Side-Channel Security: Analysis, Simulation and Measurements
Daniel Dobkin, Edut Katz, David Popovtzer, Itamar Levi
Attacks and cryptanalysis
Considering side-channel analysis (SCA) security for cryptographic devices, the mitigation of electromagnetic leakage and electromagnetic interference (EMI) between modules poses significant challenges. This paper presents a comprehensive review and deep analysis of the utilization of EMI shielding materials, devised for reliability purposes and standards such as EMI/EMC, as a countermeasure to enhance EM-SCA security. We survey the current landscape of EMI-shields materials, including...
A Not So Discrete Sampler: Power Analysis Attacks on HAWK signature scheme
Morgane Guerreau, Mélissa Rossi
Attacks and cryptanalysis
HAWK is a lattice-based signature scheme candidate to the fourth call of the NIST's Post-Quantum standardization campaign. Considered as a cousin of Falcon (one of the future NIST post-quantum standards) one can wonder whether HAWK shares the same drawbacks as Falcon in terms of side-channel attacks. Indeed, Falcon signature algorithm and particularly its Gaussian sampler, has shown to be highly vulnerable to power-analysis attacks. Besides, efficiently protecting Falcon's signature...
Efficient Differentially Private Set Intersection
Xinyu Peng, Yufei Wang, Weiran Liu, Liqiang Peng, Feng Han, Zhen Gu, Jianling Sun, Yuan Hong
Implementation
Private Set Intersection (PSI) enables a sender and a receiver to jointly compute the intersection of their sets without disclosing other information about items not in the intersection. However, in many cases of joint data analysis, it is not just the items outside the intersection that are sensitive but the items within it. To protect such sensitive information, prior work presents a Differentially Private version of PSI (DPSI) based on a circuit-PSI using Fully Homomorphic Encryption....
Less Effort, More Success: Efficient Genetic Algorithm-Based Framework for Side-channel Collision Attacks
Jiawei Zhang, Jiangshan Long, Changhai Ou, Kexin Qiao, Fan Zhang, Shi Yan
Attacks and cryptanalysis
By introducing collision information, the existing side-channel Correlation-Enhanced Collision Attacks (CECAs) performed collision-chain detection, and reduced a given candidate space to a significantly smaller collision-chain space, leading to more efficient key recovery. However, they are still limited by low collision detection speed and low success rate of key recovery. To address these issues, we first give a Collision Detection framework with Genetic Algorithm (CDGA), which exploits ...
A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems
Julius Hermelink, Silvan Streit, Erik Mårtensson, Richard Petri
Attacks and cryptanalysis
Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice.
In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks.
We define two...
Hardware Implementation and Security Analysis of Local-Masked NTT for CRYSTALS-Kyber
Rafael Carrera Rodriguez, Emanuele Valea, Florent Bruguier, Pascal Benoit
Implementation
The rapid evolution of post-quantum cryptography, spurred by standardization efforts such as those led by NIST, has highlighted the prominence of lattice-based cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist regarding the security of cryptographic implementations, particularly in the face of Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic
Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially single-trace...
STORM — Small Table Oriented Redundancy-based SCA Mitigation for AES
Yaacov Belenky, Hennadii Chernyshchyk, Oleg Karavaev, Oleh Maksymenko, Valery Teper, Daria Ryzhkova, Itamar Levi, Osnat Keren, Yury Kreimer
Attacks and cryptanalysis
Side-channel-analysis (SCA) resistance with cost optimization in AES hardware implementations remains a significant challenge. While traditional masking-based schemes offer provable security, they often incur substantial resource overheads (latency, area, randomness, performance, power consumption). Alternatively, the RAMBAM scheme introduced a redundancy-based approach to control the signal-to-noise ratio, and achieves exponential leakage reduction as redundancy increases. This method...
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via Plaintext-Ciphertext Correlation in Non-timing Channel
Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding, Liehuang Zhu, Wenrui Ma
Attacks and cryptanalysis
In side-channel testing, the standard timing analysis works when the vendor can provide a measurement to indicate the execution time of cryptographic algorithms. In this paper, we find that there exists timing leakage in power/electromagnetic channels, which is often ignored in traditional timing analysis. Hence a new method of timing analysis is proposed to deal with the case where execution time is not available. Different execution time leads to different execution intervals, affecting...
Cross Ledger Transaction Consistency for Financial Auditing
Vlasis Koutsos, Xiangan Tian, Dimitrios Papadopoulos, Dimitris Chatzopoulos
Applications
Auditing throughout a fiscal year is integral to organizations with transactional activity. Organizations transact with each other and record the details for all their economical activities so that a regulatory committee can verify the lawfulness and legitimacy of their activity. However, it is computationally infeasible for the committee to perform all necessary checks for each organization. To overcome this, auditors assist in this process: organizations give access to all their internal...
LR-OT: Leakage-Resilient Oblivious Transfer
Francesco Berti, Carmit Hazay, Itamar Levi
Cryptographic protocols
Oblivious Transfer (OT) is a fundamental cryptographic primitive, becoming a crucial component of a practical secure protocol.
OT is typically implemented in software, and one way to accelerate its running time is by using hardware implementations.
However, such implementations are vulnerable to side-channel attacks (SCAs).
On the other hand, protecting interactive protocols against SCA is highly challenging because of their longer secrets (which include inputs and randomness), more...
Exploiting signature leakages: breaking Enhanced pqsigRM
Thomas Debris-Alazard, Pierre Loisel, Valentin Vasseur
Attacks and cryptanalysis
Enhanced pqsigRM is a code-based hash-and-sign scheme proposed to the second National Institute of Standards and Technology call for post-quantum signatures. The scheme is based on the $(U,U+V)$-construction and it enjoys remarkably small signature lengths, about $1$KBytes for a security level of $128$ bits. Unfortunately we show that signatures leak information about the underlying $(U,U+V)$-structure. It allows to retrieve the private-key with~$100, 000$ signatures.
QuickPool: Privacy-Preserving Ride-Sharing Service
Banashri Karmakar, Shyam Murthy, Arpita Patra, Protik Paul
Applications
Online ride-sharing services (RSS) have become very popular owing to increased awareness of environmental concerns and as a response to increased traffic congestion. To request a ride, users submit their locations and route information for ride matching to a service provider (SP), leading to possible privacy concerns caused by leakage of users' location data. We propose QuickPool, an efficient SP-aided RSS solution that can obliviously match multiple riders and drivers simultaneously,...
Phase Modulation Side Channels: Jittery JTAG for On-Chip Voltage Measurements
Colin O'Flynn
Implementation
Measuring the fluctuations of the clock phase of a target was identified as a leakage source on early electromagnetic side-channel investigations. Despite this, only recently was directly measuring the clock phase (or jitter) of digital signals from a target connected to being a source of exploitable leakage. As the phase of a clock output will be related to signal propagation delay through the target, and this propagation delay is related to voltage, this means that most digital devices...
Exploiting Clock-Slew Dependent Variability in CMOS Digital Circuits Towards Power and EM SCA Resilience
Archisman Ghosh, Md. Abdur Rahman, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications
Mathematically secured cryptographic implementations leak critical information in terms of power, EM emanations, etc. Several circuit-level countermeasures are proposed to hinder side channel leakage at the source. Circuit-level countermeasures (e.g., IVR, STELLAR, WDDL, etc) are often preferred as they are generic and have low overhead. They either dither the voltage randomly or attenuate the meaningful signature at $V_{DD}$ port. Although any digital implementation has two generic ports,...
Improved Reductions from Noisy to Bounded and Probing Leakages via Hockey-Stick Divergences
Maciej Obremski, João Ribeiro, Lawrence Roy, François-Xavier Standaert, Daniele Venturi
Attacks and cryptanalysis
There exists a mismatch between the theory and practice of cryptography in the presence of leakage. On the theoretical front, the bounded leakage model, where the adversary learns bounded-length but noiseless information about secret components, and the random probing model, where the adversary learns some internal values of a leaking implementation with some probability, are convenient abstractions to analyze the security of numerous designs. On the practical front, side-channel attacks...
ProxCode: Efficient Biometric Proximity Searchable Encryption from Error Correcting Codes
Maryam Rezapour, Benjamin Fuller
Applications
This work builds approximate proximity searchable encryption. Secure biometric databases are the primary application. Prior work (Kuzu, Islam, and Kantarcioglu, ICDE 2012) combines locality-sensitive hashes, or LSHs, (Indyk, STOC ’98), and oblivious multimaps. The multimap associates LSH outputs as keywords to biometrics as values.
When the desired result set is of size at most one, we show a new preprocessing technique and system called ProxCode that inserts shares of a linear secret...
Consolidated Linear Masking (CLM): Generalized Randomized Isomorphic Representations, Powerful Degrees of Freedom and Low(er)-cost
Itamar Levi, Osnat Keren
Implementation
Masking is a widely adopted countermeasure against side-channel analysis (SCA) that protects cryptographic implementations from information leakage. However, current masking schemes often incur significant overhead in terms of electronic cost. RAMBAM, a recently proposed masking technique that fits elegantly with the AES algorithm, offers ultra-low latency/area by utilizing redundant representations of finite field elements. This paper presents a comprehensive generalization of RAMBAM and...
Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things
Shiyuan Xu, Xue Chen, Yu Guo, Siu-Ming Yiu, Shang Gao, Bin Xiao
Public-key cryptography
Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage...
DISCO: Dynamic Searchable Encryption with Constant State
Xiangfu Song, Yu Zheng, Jianli Bai, Changyu Dong, Zheli Liu, Ee-Chien Chang
Applications
Dynamic searchable encryption (DSE) with forward and backward privacy reduces leakages in early-stage schemes. Security enhancement comes with a price -- maintaining updatable keyword-wise state information. State information, if stored locally, incurs significant client-side storage overhead for keyword-rich datasets, potentially hindering real-world deployments.
We propose DISCO, a simple and efficient framework for designing DSE schemes using constant client state. DISCO combines...
CISELeaks: Information Leakage Assessment of Cryptographic Instruction Set Extension Prototypes
Aruna Jayasena, Richard Bachmann, Prabhat Mishra
Attacks and cryptanalysis
Software based cryptographic implementations provide flexibility but they face performance limitations. In contrast, hardware based cryptographic accelerators utilize application-specific customization to provide real-time security solutions.
Cryptographic instruction-set extensions (CISE) combine the advantages of both hardware and software based solutions to provide higher performance combined with the flexibility of atomic-level cryptographic operations. While CISE is widely used to...
Time Sharing - A Novel Approach to Low-Latency Masking
Dilip Kumar S. V., Siemen Dhooghe, Josep Balasch, Benedikt Gierlichs, Ingrid Verbauwhede
Implementation
We present a novel approach to small area and low-latency first-order masking in hardware. The core idea is to separate the processing of shares in time in order to achieve non-completeness. Resulting circuits are proven first-order glitch-extended PINI secure. This means the method can be straightforwardly applied to mask arbitrary functions without constraints which the designer must take care of. Furthermore we show that an implementation can benefit from optimization through EDA tools...
Scalable Private Set Union, with Stronger Security
Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Dawu Gu
Cryptographic protocols
Private Set Union (PSU) protocol allows parties, each holding an input set, to jointly compute the union of the sets without revealing anything else. In the literature, scalable PSU protocols follow the “split-execute-assemble” paradigm (Kolesnikov et al., ASIACRYPT 2019); in addition, those fast protocols often use Oblivious Transfer as building blocks. Kolesnikov et al. (ASIACRYPT 2019) and Jia et al. (USENIX Security 2022), pointed out that certain security issues can be introduced in the...
Result Pattern Hiding Boolean Searchable Encryption: Achieving Negligible False Positive Rates in Low Storage Overhead
Dandan Yuan, Shujie Cui, Giovanni Russello
Cryptographic protocols
Boolean Searchable Symmetric Encryption (SSE) enables secure outsourcing of databases to an untrusted server in encrypted form and allows the client to execute secure Boolean queries involving multiple keywords. The leakage of keyword pair result pattern (KPRP) in a Boolean search poses a significant threat, which reveals the intersection of documents containing any two keywords involved in a search and can be exploited by attackers to recover plaintext information about searched keywords...
Length Leakage in Oblivious Data Access Mechanisms
Grace Jia, Rachit Agarwal, Anurag Khandelwal
Applications
This paper explores the problem of preventing length leakage in oblivious data access mechanisms with passive persistent adversaries. We show that designing mechanisms that prevent both length leakage and access pattern leakage requires navigating a three-way tradeoff between storage footprint, bandwidth footprint, and the information leaked to the adversary. We establish powerful lower bounds on achievable storage and bandwidth footprints for a variety of leakage profiles, and present...
PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest Path Queries
Francesca Falzon, Esha Ghosh, Kenneth G. Paterson, Roberto Tamassia
Applications
The increasing importance of graph databases and cloud storage services prompts the study of private queries on graphs. We propose PathGES, a graph encryption scheme (GES) for single-pair shortest path queries. PathGES is efficient and mitigates the state-of-the-art attack by Falzon and Paterson (2022) on the GES by Ghosh, Kamara, and Tamassia (2021), while only incurring an additional logarithmic factor in storage overhead. PathGES leverages a novel data structure that minimizes leakage and...
INDIANA - Verifying (Random) Probing Security through Indistinguishability Analysis
Christof Beierle, Jakob Feldtkeller, Anna Guinet, Tim Güneysu, Gregor Leander, Jan Richter-Brockmann, Pascal Sasdrich
Implementation
Despite masking being a prevalent protection against passive side-channel attacks, implementing it securely in hardware remains a manual, challenging, and error-prone process.
This paper introduces INDIANA, a comprehensive security verification tool for hardware masking. It provides a hardware verification framework, enabling a complete analysis of simulation-based security in the glitch-extended probing model, with cycle-accurate estimations for leakage probabilities in the random...
Lattice-based Broadcast Authenticated Searchable Encryption for Cloud Storage
Yibo Cao, Shiyuan Xu, Xiu-Bo Chen, Gang Xu, Siu-Ming Yiu, Zongpeng Li
Public-key cryptography
For security issue, data in cloud is encrypted. Searching encrypted data (without decryption) is a practical and important problem. Public key authenticated encryption with keyword search (PAEKS) enables the retrieval of encrypted data, while resisting the insider keyword guessing attacks (IKGAs). Most PAEKS schemes only work with single-receiver model, exhibiting very limited applicability. To address this concern, there have been researches on broadcast authenticated encryption with...
Formal Definition and Verification for Combined Random Fault and Random Probing Security
Sonia Belaid, Jakob Feldtkeller, Tim Güneysu, Anna Guinet, Jan Richter-Brockmann, Matthieu Rivain, Pascal Sasdrich, Abdul Rahman Taleb
Implementation
In our highly digitalized world, an adversary is not constrained to purely digital attacks but can monitor or influence the physical execution environment of a target computing device. Such side-channel or fault-injection analysis poses a significant threat to otherwise secure cryptographic implementations. Hence, it is important to consider additional adversarial capabilities when analyzing the security of cryptographic implementations besides the default black-box model. For side-channel...
Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography
Prabhanjan Ananth, Fatih Kaleoglu, Henry Yuen
Foundations
Unclonable cryptography is concerned with leveraging the no-cloning principle to build cryptographic primitives that are otherwise impossible to achieve classically. Understanding the feasibility of unclonable encryption, one of the key unclonable primitives, satisfying indistinguishability security in the plain model has been a major open question in the area. So far, the existing constructions of unclonable encryption are either in the quantum random oracle model or are based on new...
Automated Generation of Fault-Resistant Circuits
Nicolai Müller, Amir Moradi
Implementation
Fault Injection (FI) attacks, which involve intentionally introducing faults into a system to cause it to behave in an unintended manner, are widely recognized and pose a significant threat to the security of cryptographic primitives implemented in hardware, making fault tolerance an increasingly critical concern. However, protecting cryptographic hardware primitives securely and efficiently, even with well-established and documented methods such as redundant computation, can be a...
Composing Timed Cryptographic Protocols: Foundations and Applications
Karim Eldefrawy, Benjamin Terner, Moti Yung
Foundations
Time-lock puzzles are unique cryptographic primitives that use computational complexity to keep information secret for some period of time, after which security expires. Unfortunately, twenty-five years after their introduction, current analysis techniques of time-lock primitives provide no sound mechanism to build multi-party cryptographic protocols which use expiring security as a building block. As pointed out recently in the peer-reviewed literature, current attempts at this problem...
GraphOS: Towards Oblivious Graph Processing
Javad Ghareh Chamani, Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, Rasool Jalili
Cryptographic protocols
We propose GraphOS, a system that allows a client that owns a graph database to outsource it to an untrusted server for storage and querying. It relies on doubly-oblivious primitives and trusted hardware to achieve a very strong privacy and efficiency notion which we call oblivious graph processing: the server learns nothing besides the number of graph vertexes and edges, and for each query its type and response size. At a technical level, GraphOS stores the graph on a doubly-oblivious data...
Organizing Records for Retrieval in Multi-Dimensional Range Searchable Encryption
Mahdieh Heidaripour, Ladan Kian, Maryam Rezapour, Mark Holcomb, Benjamin Fuller, Gagan Agrawal, Hoda Maleki
Applications
Storage of sensitive multi-dimensional arrays must be secure and efficient in storage and processing time. Searchable encryption allows one to trade between security and efficiency. Searchable encryption design focuses on building indexes, overlooking the crucial aspect of record retrieval. Gui et al. (PoPETS 2023) showed that understanding the security and efficiency of record retrieval is critical to understand the overall system. A common technique for improving security is partitioning...
Decryption Indistinguishability under Chosen Control Flow
Ganyuan Cao
Secret-key cryptography
Security proofs for cryptographic primitives typically assume operations are executed in the correct sequence; however, insecure implementations or software-level attacks can disrupt control flows, potentially invalidating these guarantees. To address this issue, we introduce a new security notion, IND-CFA, which formalizes decryption
security in the presence of adversarially controlled execution flows. Using this notion, we investigate the control flows under which a cryptographic scheme...
PoMMES: Prevention of Micro-architectural Leakages in Masked Embedded Software
Jannik Zeitschner, Amir Moradi
Implementation
Software solutions to address computational challenges are ubiquitous in our daily lives. One specific application area where software is often used is in embedded systems, which, like other digital electronic devices, are vulnerable to side-channel analysis attacks. Although masking is the most common countermeasure and provides a solid theoretical foundation for ensuring security, recent research has revealed a crucial gap between theoretical and real-world security. This shortcoming stems...
Tokenised Multi-client Provisioning for Dynamic Searchable Encryption with Forward and Backward Privacy
Arnab Bag, Sikhar Patranabis, Debdeep Mukhopadhyay
Applications
Searchable Symmetric Encryption (SSE) has opened up an attractive avenue for privacy-preserved processing of outsourced data on the untrusted cloud infrastructure. SSE aims to support efficient Boolean query processing with optimal storage and search overhead over large real databases. However, current constructions in the literature lack the support for multi-client search and dynamic updates to the encrypted databases, which are essential requirements for the widespread deployment of SSE...
Two-Party Decision Tree Training from Updatable Order-Revealing Encryption
Robin Berger, Felix Dörre, Alexander Koch
Cryptographic protocols
Running machine learning algorithms on encrypted data is a way forward to marry functionality needs common in industry with the important concerns for privacy when working with potentially sensitive data. While there is already a growing field on this topic and a variety of protocols, mostly employing fully homomorphic encryption or performing secure multiparty computation (MPC), we are the first to propose a protocol that makes use of a specialized encryption scheme that allows to do secure...
Scoring the predictions: a way to improve profiling side-channel attacks
Damien Robissout, Lilian Bossuet, Amaury Habrard
Attacks and cryptanalysis
Side-channel analysis is an important part of the security evaluations of hardware components and more specifically of those that include cryptographic algorithms. Profiling attacks are among the most powerful attacks as they assume the attacker has access to a clone device of the one under attack. Using the clone device allows the attacker to make a profile of physical leakages linked to the execution of algorithms. This work focuses on the characteristics of this profile and the...
Menhir: An Oblivious Database with Protection against Access and Volume Pattern Leakage
Leonie Reichert, Gowri R Chandran, Phillipp Schoppmann, Thomas Schneider, Björn Scheuermann
Applications
Analyzing user data while protecting the privacy of individuals remains a big challenge. Trusted execution environments (TEEs) are a possible solution as they protect processes and Virtual Machines (VMs) against malicious hosts. However, TEEs can leak access patterns to code and to the data being processed. Furthermore, when data is stored in a TEE database, the data volume required to answer a query is another unwanted side channel that contains sensitive information. Both types of...
Leakage-Abuse Attacks Against Structured Encryption for SQL
Alexander Hoover, Ruth Ng, Daren Khu, Yao'an Li, Joelle Lim, Derrick Ng, Jed Lim, Yiyang Song
Attacks and cryptanalysis
Structured Encryption (StE) enables a client to securely store and query data stored on an untrusted server. Recent constructions of StE have moved beyond basic queries, and now support large subsets of SQL. However, the security of these constructions is poorly understood, and no systematic analysis has been performed.
We address this by providing the first leakage-abuse attacks against StE for SQL schemes. Our attacks can be run by a passive adversary on a server with access to some...
Efficient isochronous fixed-weight sampling with applications to NTRU
Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López
Implementation
We present a solution to the open problem of designing a linear-time, unbiased and timing attack-resistant shuffling algorithm for fixed-weight sampling. Although it can be implemented without timing leakages of secret data in any architecture, we illustrate with ARMv7-M and ARMv8-A implementations; for the latter, we take advantage of architectural features such as NEON and conditional instructions, which are representative of features available on architectures targeting similar systems,...
HyCaMi: High-Level Synthesis for Cache Side-Channel Mitigation
Heiko Mantel, Joachim Schmidt, Thomas Schneider, Maximilian Stillger, Tim Weißmantel, Hossein Yalame
Attacks and cryptanalysis
Cache side-channels are a major threat to cryptographic implementations, particularly block ciphers. Traditional manual hardening methods transform block ciphers into Boolean circuits, a practice refined since the late 90s. The only existing automatic approach based on Boolean circuits achieves security but suffers from performance issues. This paper examines the use of Lookup Tables (LUTs) for automatic hardening of block ciphers against cache side-channel attacks. We present a novel method...
Similar Data is Powerful: Enhancing Inference Attacks on SSE with Volume Leakages
Björn Ho, Huanhuan Chen, Zeshun Shi, Kaitai Liang
Applications
Searchable symmetric encryption (SSE) schemes provide users with the ability to perform keyword searches on encrypted databases without the need for decryption. While this functionality is advantageous, it introduces the potential for inadvertent information disclosure, thereby exposing SSE systems to various types of attacks. In this work, we introduce a new inference attack aimed at enhancing the query recovery accuracy of RefScore (presented at USENIX 2021). The proposed approach...
Inject Less, Recover More: Unlocking the Potential of Document Recovery in Injection Attacks Against SSE
Manning Zhang, Zeshun Shi, Huanhuan Chen, Kaitai Liang
Applications
Searchable symmetric encryption has been vulnerable to inference attacks that rely on uniqueness in leakage patterns. However, many keywords in datasets lack distinctive leakage patterns, limiting the effectiveness of such attacks. The file injection attacks, initially proposed by Cash et al. (CCS 2015), have shown impressive performance with 100% accuracy and no prior knowledge requirement. Nevertheless, this attack fails to recover queries with underlying keywords not present in the...
Zero-Knowledge Proof Vulnerability Analysis and Security Auditing
Xueyan Tang, Lingzhi Shi, Xun Wang, Kyle Charbonnet, Shixiang Tang, Shixiao Sun
Cryptographic protocols
Zero-Knowledge Proof (ZKP) technology marks a revolutionary advancement in the field of cryptography, enabling the verification of certain information ownership without revealing any specific details. This technology, with its paradoxical yet powerful characteristics, provides a solid foundation for a wide range of applications, especially in enhancing the privacy and security of blockchain technology and other cryptographic systems. As ZKP technology increasingly becomes a part of the...
Single Trace is All It Takes: Efficient Side-channel Attack on Dilithium
Zehua Qiao, Yuejun Liu, Yongbin Zhou, Yuhan Zhao, Shuyi Chen
Attacks and cryptanalysis
As we enter 2024, the post-quantum cryptographic algorithm Dilithium, which emerged from the National Institute of Standards and Technology post-quantum cryptography competition, has now reached the deployment stage. This paper focuses on the practical security of Dilithium. We performed practical attacks on Dilithium2 on an STM32F4 platform. Our results indicate that an attack can be executed with just two signatures within five minutes, with a single signature offering a 60% probability of...
Atlas-X Equity Financing: Unlocking New Methods to Securely Obfuscate Axe Inventory Data Based on Differential Privacy
Antigoni Polychroniadou, Gabriele Cipriani, Richard Hua, Tucker Balch
Applications
Banks publish daily a list of available securities/assets (axe list) to selected clients to help them effectively locate Long (buy) or Short (sell) trades at reduced financing rates. This reduces costs for the bank, as the list aggregates the bank's internal firm inventory per asset for all clients of long as well as short trades. However, this is somewhat problematic: (1) the bank's inventory is revealed; (2) trades of clients who contribute to the aggregated list, particularly those deemed...
Fastcrypto: Pioneering Cryptography Via Continuous Benchmarking
Kostas Kryptos Chalkias, Jonas Lindstrøm, Deepak Maram, Ben Riva, Arnab Roy, Alberto Sonnino, Joy Wang
Implementation
In the rapidly evolving fields of encryption and blockchain technologies, the efficiency and security of cryptographic schemes significantly impact performance. This paper introduces a comprehensive framework for continuous benchmarking in one of the most popular cryptography Rust libraries, fastcrypto. What makes our analysis unique is the realization that automated benchmarking is not just a performance monitor and optimization tool, but it can be used for cryptanalysis and innovation...
Generalized Feistel Ciphers for Efficient Prime Field Masking - Full Version
Lorenzo Grassi, Loïc Masure, Pierrick Méaux, Thorben Moos, François-Xavier Standaert
Secret-key cryptography
A recent work from Eurocrypt 2023 suggests that prime-field masking has excellent potential to improve the efficiency vs. security tradeoff of masked implementations against side-channel attacks, especially in contexts where physical leakages show low noise. We pick up on the main open challenge that this seed result leads to, namely the design of an optimized prime cipher able to take advantage of this potential. Given the interest of tweakable block ciphers with cheap inverses in many...
SNOW-SCA: ML-assisted Side-Channel Attack on SNOW-V
Harshit Saurabh, Anupam Golder, Samarth Shivakumar Titti, Suparna Kundu, Chaoyun Li, Angshuman Karmakar, Debayan Das
Attacks and cryptanalysis
This paper presents SNOW-SCA, the first power side-channel analysis (SCA) attack of a 5G mobile communication security standard candidate, SNOW-V, running on a 32-bit ARM Cortex-M4 microcontroller. First, we perform a generic known-key correlation (KKC) analysis to identify the leakage points. Next, a correlation power analysis (CPA) attack is performed, which reduces the attack complexity to two key guesses for each key byte. The correct secret key is then uniquely identified utilizing...
A Cautionary Note: Side-Channel Leakage Implications of Deterministic Signature Schemes
Hermann Seuschek, Johann Heyszl, Fabrizio De Santis
Two recent proposals by Bernstein and Pornin emphasize the use of deterministic signatures in DSA and its elliptic curve-based variants. Deterministic signatures derive the required ephemeral key value in a deterministic manner from the message to be signed and the secret key instead of using random number generators. The goal is to prevent severe security issues, such as the straight-forward secret key recovery from low quality random numbers. Recent developments have raised skepticism...
Efficient Actively Secure DPF and RAM-based 2PC with One-Bit Leakage
Wenhao Zhang, Xiaojie Guo, Kang Yang, Ruiyu Zhu, Yu Yu, Xiao Wang
Cryptographic protocols
Secure two-party computation (2PC) in the RAM model has attracted huge attention in recent years. Most existing results only support semi-honest security, with the exception of Keller and Yanai (Eurocrypt 2018) with very high cost. In this paper, we propose an efficient RAM-based 2PC protocol with active security and one-bit leakage.
1) We propose an actively secure protocol for distributed point function (DPF), with one-bit leakage, that is essentially as efficient as the...
Plan your defense: A comparative analysis of leakage detection methods on RISC-V cores
Konstantina Miteloudi, Asmita Adhikary, Niels van Drueten, Lejla Batina, Ileana Buhan
Applications
Hardening microprocessors against side-channel attacks is a critical aspect of ensuring their security. A key step in this process is identifying and mitigating “leaky" hardware modules, which leak information during the execution of cryptographic algorithms.
In this paper, we explore how different leakage detection methods, the Side-channel Vulnerability Factor (SVF) and the Test Vector Leakage Assessment (TVLA), contribute to hardening of microprocessors. We conduct experiments on two...
On Information-Theoretic Secure Multiparty Computation with Local Repairability
Daniel Escudero, Ivan Tjuawinata, Chaoping Xing
Cryptographic protocols
In this work we consider the task of designing information-theoretic MPC protocols for which the state of a given party can be recovered from a small amount of parties, a property we refer to as local repairability.
This is useful when considering MPC over dynamic settings where parties leave and join a computation, a scenario that has gained notable attention in recent literature.
Thanks to the results of (Cramer et al. EUROCRYPT'00), designing such protocols boils down to...
Leakage-Resilient Attribute-Based Encryption with Attribute-Hiding
Yijian Zhang, Yunhao Ling, Jie Chen, Luping Wang
Public-key cryptography
In this work, we present two generic frameworks for leakage-resilient attribute-based encryption (ABE), which is an improved version of ABE that can be proven secure even when part of the secret key is leaked. Our frameworks rely on the standard assumption ($k$-Lin) over prime-order groups. The first framework is designed for leakage-resilient ABE with attribute-hiding in the bounded leakage model. Prior to this work, no one had yet derived a generic leakage-resilient ABE framework with...
Connecting Leakage-Resilient Secret Sharing to Practice: Scaling Trends and Physical Dependencies of Prime Field Masking
Sebastian Faust, Loïc Masure, Elena Micheli, Maximilian Orlt, François-Xavier Standaert
Implementation
Symmetric ciphers operating in (small or mid-size) prime fields have been shown to be promising candidates to maintain security against low-noise (or even noise-free) side-channel leakage.
In order to design prime ciphers that best trade physical security and implementation efficiency, it is essential to understand how side-channel security evolves with the field size (i.e., scaling trends).
Unfortunately, it has also been shown that such a scaling trend depends on the leakage functions...
Accelerating SLH-DSA by Two Orders of Magnitude with a Single Hash Unit
Markku-Juhani O. Saarinen
Implementation
We report on efficient and secure hardware implementation techniques for the FIPS 205 SLH-DSA Hash-Based Signature Standard. We demonstrate that very significant overall performance gains can be obtained from hardware that optimizes the padding formats and iterative hashing processes specific to SLH-DSA. A prototype implementation, SLotH, contains Keccak/SHAKE, SHA2-256, and SHA2-512 cores and supports all 12 parameter sets of SLH-DSA. SLotH also supports side-channel secure PRF computation...
FuLeakage: Breaking FuLeeca by Learning Attacks
Felicitas Hörmann, Wessel van Woerden
Attacks and cryptanalysis
FuLeeca is a signature scheme submitted to the recent NIST call for additional signatures. It is an efficient hash-and-sign scheme based on quasi-cyclic codes in the Lee metric and resembles the lattice-based signature Falcon. FuLeeca proposes a so-called concentration step within the signing procedure to avoid leakage of secret-key information from the signatures. However, FuLeeca is still vulnerable to learning attacks, which were first observed for lattice-based schemes. We present three...
From Random Probing to Noisy Leakages Without Field-Size Dependence
Gianluca Brian, Stefan Dziembowski, Sebastian Faust
Foundations
Side channel attacks are devastating attacks targeting cryptographic implementations. To protect against these attacks, various countermeasures have been proposed -- in particular, the so-called masking scheme. Masking schemes work by hiding sensitive information via secret sharing all intermediate values that occur during the evaluation of a cryptographic implementation. Over the last decade, there has been broad interest in designing and formally analyzing such schemes. The random probing...
Leakage-Tolerant Circuits
Yuval Ishai, Yifan Song
Foundations
A leakage-resilient circuit for $f:\{0,1\}^n\to\{0,1\}^m$ is a randomized Boolean circuit $C$ mapping a randomized encoding of an input $x$ to an encoding of $y=f(x)$, such that applying any leakage function $L\in \cal L$ to the wires of $C$ reveals essentially nothing about $x$. A leakage-tolerant circuit achieves the stronger guarantee that even when $x$ and $y$ are not protected by any encoding, the output of $L$ can be simulated by applying some $L'\in \cal L$ to $x$ and $y$ alone....
POPSTAR: Lightweight Threshold Reporting with Reduced Leakage
Hanjun Li, Sela Navot, Stefano Tessaro
Cryptographic protocols
This paper proposes POPSTAR, a new lightweight protocol for the private computation of heavy hitters, also known as a private threshold reporting system. In such a protocol, the users provide input measurements, and a report server learns which measurements appear more than a pre-specified threshold. POPSTAR follows the same architecture as STAR (Davidson et al, CCS 2022) by relying on a helper randomness server in addition to a main server computing the aggregate heavy hitter statistics....
SweetPAKE: Key exchange with decoy passwords
Afonso Arriaga, Peter Y.A. Ryan, Marjan Skrobot
Cryptographic protocols
Decoy accounts are often used as an indicator of the compromise of sensitive data, such as password files. An attacker targeting only specific known-to-be-real accounts might, however, remain undetected. A more effective method proposed by Juels and Rivest at CCS'13 is to maintain additional fake passwords associated with each account. An attacker who gains access to the password file is unable to tell apart real passwords from fake passwords, and the attempted usage of a false password...
In this paper, we present the first single trace side-channel attack that targets the MPC-in-the-Head (MPCitH) framework based on threshold secret sharing, also known as Threshold Computation in the Head (TCitH) in its original version. This MPCitH framework can be found in 5 of the 14 digital signatures schemes in the recent second round of the National Institute of Standards and Technology (NIST) call for digital signatures. In this work, we start by highlighting a side-channel...
Given the devastating security compromises caused by side-channel attacks on existing classical systems, can we store our private data encoded as a quantum state so that they can be kept private in the face of arbitrary side-channel attacks? The unclonable nature of quantum information allows us to build various quantum protection schemes for cryptographic information such as secret keys. Examples of quantum protection notions include copy-protection, secure leasing, and finally,...
Side-channel attacks pose a serious risk to cryptographic implementations, particularly in embedded systems. While current methods, such as test vector leakage assessment (TVLA), can identify leakage points, they do not provide insights into their root causes. We propose ARCHER, an architecture-level tool designed to perform side-channel analysis and root cause identification for software cryptographic implementations on RISC-V processors. ARCHER has two main components: (1) Side-Channel...
In ASIACRYPT 2019, Andreeva et al. introduced a new symmetric key primitive called the $\textit{forkcipher}$, designed for lightweight applications handling short messages. A forkcipher is a keyed function with a public tweak, featuring fixed-length input and fixed-length (expanding) output. They also proposed a specific forkcipher, ForkSkinny, based on the tweakable block cipher SKINNY, and its security was evaluated through cryptanalysis. Since then, several efficient AEAD and MAC schemes...
As privacy concerns have arisen in machine learning, privacy-preserving machine learning (PPML) has received significant attention. Fully homomorphic encryption (FHE) and secure multi-party computation (MPC) are representative building blocks for PPML. However, in PPML protocols based on FHE and MPC, interaction between the client (who provides encrypted input data) and the evaluator (who performs the computation) is essential to obtain the final result in plaintext. Functional encryption...
Boneh et al. (CRYPTO'18) proposed two $t$-out-of-$N$ threshold fully homomorphic encryption ($\sf TFHE$) schemes based on Shamir secret sharing scheme and $\{0,1\}$-linear secret sharing scheme. They demonstrated the simulation security, ensuring no information leakage during partial or final decryption. This breakthrough allows any scheme to be converted into a threshold scheme by using $\sf TFHE$. We propose two polynomial time algorithms to break the simulation security of...
We extend the concept of access control for functional encryption, introduced by Abdalla et al. (ASIACRYPT 2020), to function-revealing encryption (Joy and Passelègue, SCN 2018). Here “access control” means that function evaluation is only possible when a specified access policy is met. Specifically, we introduce access-controlled inner product function-revealing encryption (AC-IPFRE) and give two applications. On the theoretical side, we use AC-IPFRE to show that function-hiding...
In response to the quantum threat, new post-quantum cryptographic algorithms will soon be deployed to replace existing public-key schemes. MAYO is a quantum-resistant digital signature scheme whose small keys and signatures make it suitable for widespread adoption, including on embedded platforms with limited security resources. This paper demonstrates two single-trace side-channel attacks on a MAYO implementation in ARM Cortex-M4 that recover a secret key with probabilities of 99.9% and...
Searchable symmetric encryption (SSE) enables queries over symmetrically encrypted databases. To achieve practical efficiency, SSE schemes incur a certain amount of leakage; however, this leads to the possibility of leakage cryptanalysis, i.e., cryptanalytic attacks that exploit the leakage from the target SSE scheme to subvert its data and query privacy guarantees. Leakage cryptanalysis has been widely studied in the context of SSE schemes supporting either keyword queries or range queries,...
In this work, we propose the first hardware implementation of Classic McEliece protected with countermeasures against Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA). Classic Mceliece is one of the leading candidates for Key Encapsulation Mechanisms (KEMs) in the ongoing round 4 of the NIST standardization process for post-quantum cryptography. In particular, we implement a range of generic countermeasures against SCA and FIA, particularly protected the vulnerable operations...
Pseudo-Random Injections (PRIs) have had several applications in symmetric-key cryptography, such as in the idealization of Authenticated Encryption with Associated Data (AEAD) schemes, building robust AEAD, and, recently, in converting a committing AEAD scheme into a succinctly committing AEAD scheme. In Crypto 2024, Bellare and Hoang showed that if an AEAD scheme is already committing, it can be transformed into a succinctly committed scheme by encrypting part of the plaintext using a PRI....
\textit{Federated Learning} (FL) is a distributed machine learning paradigm that allows multiple clients to train models collaboratively without sharing local data. Numerous works have explored security and privacy protection in FL, as well as its integration with blockchain technology. However, existing FL works still face critical issues. \romannumeral1) It is difficult to achieving \textit{poisoning robustness} and \textit{data privacy} while ensuring high \textit{model accuracy}....
We explore the use of microbenchmarks, small assembly code snippets, to detect microarchitectural side-channel leakage in CPU implementations. Specifically, we investigate the effectiveness of microbenchmarks in diagnosing the predisposition to side-channel leaks in two commonly used RISC-V cores: Picorv32 and Ibex. We propose a new framework that involves diagnosing side-channel leaks, identifying leakage points, and constructing leakage profiles to understand the underlying causes. We...
Distributed mean estimation (DME) is a fundamental and important task as it serves as a subroutine in convex optimization, aggregate statistics, and, more generally, federated learning. The inputs for distributed mean estimation (DME) are provided by clients (such as mobile devices), and these inputs often contain sensitive information. Thus, protecting privacy and mitigating the influence of malicious adversaries are critical concerns in DME. A surge of recent works has focused on building...
We propose a dynamic, low-latency encrypted multi-map (EMM) that operates in two modes: low-leakage mode, which reveals minimal information such as data size, expected response length, and query arrival rate; and subliminal mode, which reveals only the data size while hiding metadata including query and update times, the number of operations executed, and even whether an operation was executed at all---albeit at the cost of full correctness. We achieve this by exploiting a tradeoff...
Classic McEliece is one of the three code-based candidates in the fourth round of the NIST post-quantum cryptography standardization process in the Key Encapsulation Mechanism category. As such, its decapsulation algorithm is used to recover the session key associated with a ciphertext using the private key. In this article, we propose a new side-channel attack on the syndrome computation in the decapsulation algorithm that recovers the private key, which consists of the private Goppa...
Zero-knowledge for set membership is a building block at the core of several privacy-aware applications, such as anonymous payments, credentials and whitelists. We propose a new efficient construction for the batching variant of the problem, where a user intends to show knowledge of several elements (a batch) in a set without any leakage on the elements. Our construction is transparent—it does not requires a trusted setup—and based on Curve Trees by Campanelli, Hall-Andersen and Kamp...
Searchable encryption, or more generally, structured encryption, permits search over encrypted data. It is an important cryptographic tool for securing cloud storage. The standard security notion for structured encryption mandates that a protocol leaks nothing about the data or queries, except for some allowed leakage, defined by the leakage function. This is due to the fact that some leakage is unavoidable for efficient schemes. Unfortunately, it was shown by numerous works that even...
Masking is a sound countermeasure to protect against differential power analysis. Since the work by Balasch et al. in ASIACRYPT 2012, inner product masking has been explored as an alternative to the well known Boolean masking. In CARDIS 2017, Poussier et al. showed that inner product masking achieves higher-order security versus Boolean masking, for the same shared size, in the bit-probing model. Wang et al. in TCHES 2020 verified the inner product masking's security order amplification in...
Encrypted Search Algorithms (ESAs) are a technique to encrypt data while the user can still search over it. ESAs can protect privacy and ensure security of sensitive data stored on a remote storage. Originally, ESAs were used in the context of documents that consist of keywords. The user encrypts the documents, sends them to a remote server and is still able to search for keywords, without exposing information about the plaintext. The idea of ESAs has also been applied to relational...
In scenarios where a seller holds sensitive data $x$, like employee / patient records or ecological data, and a buyer seeks to obtain an evaluation of specific function $f$ on this data, solutions in trustless digital environments like blockchain-based Web3 systems typically fall into two categories: (1) Smart contract-powered solutions and (2) cryptographic solutions leveraging tools such as adaptor signatures. The former approach offers atomic transactions where the buyer learns the...
Datasets of side-channel leakage measurements are widely used in research to develop and benchmarking side-channel attack and evaluation methodologies. Compared to using custom and/or one-off datasets, widely-used and publicly available datasets improve research reproducibility and comparability. Further, performing high-quality measurements requires specific equipment and skills, while also taking a significant amount of time. Therefore, using publicly available datasets lowers the barriers...
Homomorphic encryption has long been used to build voting schemes. Additively homomorphic encryption only allows simple count- ing functions. Lattice-based fully (or somewhat) homomorphic encryp- tion allows more general counting functions, but the required parameters quickly become impractical if used naively. It is safe to leak information during the counting function evaluation, as long as the information could be derived from the public result. To exploit this observation, we...
Private set intersection (PSI) is a type of private set operation (PSO) for which concretely efficient linear-complexity protocols do exist. However, the situation is currently less satisfactory for other relevant PSO problems such as private set union (PSU): For PSU, the most promising protocols either rely entirely on computationally expensive public-key operations or suffer from substantial communication overhead. In this work, we present the first PSU protocol that is mainly based...
Distributed training that enables multiple parties to jointly train a model on their respective datasets is a promising approach to address the challenges of large volumes of diverse data for training modern machine learning models. However, this approach immedi- ately raises security and privacy concerns; both about each party wishing to protect its data from other parties during training and preventing leakage of private information from the model after training through various...
Passive (leakage exploitation) and active (fault injection) physical attacks pose a significant threat to cryptographic schemes. Although leakage-resistant cryptography is well studied, there is little work on mode-level security in the presence of joint faults and leakage exploiting adversaries. In this paper, we focus on integrity for authenticated encryption (AE). First, we point out that there is an inherent attack in the fault-resilience model presented at ToSC 2023. This shows how...
In Side-Channel Analysis (SCA), statistical or machine learning methods are employed to extract secret information from power or electromagnetic (EM) traces. In many practical scenarios, raw power/EM traces can span hundreds of thousands of features, with relevant leakages occurring over only a few small segments. Consequently, existing SCAs often select a small number of features before launching the attack, making their success highly dependent on the feasibility of feature selection....
We consider the multi-user security under the adaptive corruptions and key leakages ($\rm{MU^{c\&l}}$ security) for lattice-based signatures. Although there exists an $\rm{MU^{c\&l}}$ secure signature based on a number-theoretic assumption, or a leakage-resilient lattice-based signature in the single-user setting, $\rm{MU^{c\&l}}$ secure lattice-based signature is not known. We examine the existing lattice-based signature schemes from the viewpoint of $\rm{MU^{c\&l}}$ security, and find...
Secure join queries over encrypted databases, the most expressive class of SQL queries, have attracted extensive attention recently. The state-of-the-art JXT (Jutla et al. ASIACRYPT 2022) enables join queries on encrypted relational databases without pre-computing all possible joins. However, JXT can merely support join queries over two tables (in encrypted databases) with some high-entropy join attributes. In this paper, we propose an equi-join query protocol over two tables dubbed JXT+,...
The area of modern zero-knowledge proof systems has seen a significant rise in popularity over the last couple of years, with new techniques and optimized constructions emerging on a regular basis. As the field matures, the aspect of implementation attacks becomes more relevant, however side-channel attacks on zero-knowledge proof systems have seen surprisingly little treatment so far. In this paper we give an overview of potential attack vectors and show that some of the underlying...
The see-in-the-middle (SITM) attack combines differential cryptanalysis and the ability to observe differential patterns in the side-channel leakage traces to reveal the secret key of SPN-based ciphers. While SITM presents a fresh perspective to side-channel analysis and allows attacks on deeper cipher rounds, there are practical difficulties that come with this method. First, one must realize a visual inspection of millions of power traces. Second, there is a strong requirement to reduce...
Password-protected key retrieval (PPKR) enables users to store and retrieve high-entropy keys from a server securely. The process is bootstrapped from a human-memorizable password only, addressing the challenge of how end-users can manage cryptographic key material. The core security requirement is protection against a corrupt server, which should not be able to learn the key or offline- attack it through the password protection. PPKR is deployed at a large scale with the WhatsApp Backup...
Self-Sovereign Identity (SSI) empowers individuals and organizations with full control over their data. Decentralized identifiers (DIDs) are at its center, where a DID contains a collection of public keys associated with an entity, and further information to enable entities to engage via secure and private messaging across different platforms. A crucial stepping stone is DIDComm, a cryptographic communication layer that is in production with version 2. Due to its widespread and active...
Due to the ubiquitous requirements and performance leap in the past decade, it has become feasible to execute garbling and secure computations in settings sensitive to side-channel attacks, including smartphones, IoTs and dedicated hardwares, and the possibilities have been demonstrated by recent works. To maintain security in the presence of a moderate amount of leaked information about internal secrets, we investigate {\it leakage-resilient garbling}. We augment the classical privacy,...
Robust message authentication codes (MACs) and authenticated encryption (AE) schemes that provide authenticity in the presence of side-channel leakage are essential primitives. These constructions often rely on primitives designed for strong leakage protection, among others including the use of strong-unpredictable (tweakable) block-ciphers. This paper extends the strong-unpredictability security definition to the versatile and new forkcipher primitive. We show how to construct secure and...
Side-channel attacks (SCAs) remain a significant threat to the security of cryptographic systems in modern embedded devices. Even mathematically secure cryptographic algorithms, when implemented in hardware, inadvertently leak information through physical side-channel signatures such as power consumption, electromagnetic (EM) radiation, light emissions, and acoustic emanations. Exploiting these side channels significantly reduces the attacker’s search space. In recent years, physical...
Always Encrypted (AE) is a Microsoft SQL Server feature that allows clients to encrypt sensitive data inside client applications and ensures that the sensitive data is hidden from untrusted servers and database administrators. AE offers two column-encryption options: deterministic encryption (DET) and randomized encryption (RND). In this paper, we explore the security implications of using AE with both DET and RND encryption modes by running Leakage Abuse Attacks (LAAs) against the system....
Masking has become a widely applied and heavily researched method to protect cryptographic implementations against SCA attacks. The success of masking is primarily attributed to its strong theoretical foundation enabling it to formally prove security by modeling physical properties through so-called probing models. Specifically, the robust $d$-probing model enables us to prove the security for arbitrarily masked hardware circuits, manually or with the assistance of automated tools, even when...
Considering side-channel analysis (SCA) security for cryptographic devices, the mitigation of electromagnetic leakage and electromagnetic interference (EMI) between modules poses significant challenges. This paper presents a comprehensive review and deep analysis of the utilization of EMI shielding materials, devised for reliability purposes and standards such as EMI/EMC, as a countermeasure to enhance EM-SCA security. We survey the current landscape of EMI-shields materials, including...
HAWK is a lattice-based signature scheme candidate to the fourth call of the NIST's Post-Quantum standardization campaign. Considered as a cousin of Falcon (one of the future NIST post-quantum standards) one can wonder whether HAWK shares the same drawbacks as Falcon in terms of side-channel attacks. Indeed, Falcon signature algorithm and particularly its Gaussian sampler, has shown to be highly vulnerable to power-analysis attacks. Besides, efficiently protecting Falcon's signature...
Private Set Intersection (PSI) enables a sender and a receiver to jointly compute the intersection of their sets without disclosing other information about items not in the intersection. However, in many cases of joint data analysis, it is not just the items outside the intersection that are sensitive but the items within it. To protect such sensitive information, prior work presents a Differentially Private version of PSI (DPSI) based on a circuit-PSI using Fully Homomorphic Encryption....
By introducing collision information, the existing side-channel Correlation-Enhanced Collision Attacks (CECAs) performed collision-chain detection, and reduced a given candidate space to a significantly smaller collision-chain space, leading to more efficient key recovery. However, they are still limited by low collision detection speed and low success rate of key recovery. To address these issues, we first give a Collision Detection framework with Genetic Algorithm (CDGA), which exploits ...
Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice. In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks. We define two...
The rapid evolution of post-quantum cryptography, spurred by standardization efforts such as those led by NIST, has highlighted the prominence of lattice-based cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist regarding the security of cryptographic implementations, particularly in the face of Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially single-trace...
Side-channel-analysis (SCA) resistance with cost optimization in AES hardware implementations remains a significant challenge. While traditional masking-based schemes offer provable security, they often incur substantial resource overheads (latency, area, randomness, performance, power consumption). Alternatively, the RAMBAM scheme introduced a redundancy-based approach to control the signal-to-noise ratio, and achieves exponential leakage reduction as redundancy increases. This method...
In side-channel testing, the standard timing analysis works when the vendor can provide a measurement to indicate the execution time of cryptographic algorithms. In this paper, we find that there exists timing leakage in power/electromagnetic channels, which is often ignored in traditional timing analysis. Hence a new method of timing analysis is proposed to deal with the case where execution time is not available. Different execution time leads to different execution intervals, affecting...
Auditing throughout a fiscal year is integral to organizations with transactional activity. Organizations transact with each other and record the details for all their economical activities so that a regulatory committee can verify the lawfulness and legitimacy of their activity. However, it is computationally infeasible for the committee to perform all necessary checks for each organization. To overcome this, auditors assist in this process: organizations give access to all their internal...
Oblivious Transfer (OT) is a fundamental cryptographic primitive, becoming a crucial component of a practical secure protocol. OT is typically implemented in software, and one way to accelerate its running time is by using hardware implementations. However, such implementations are vulnerable to side-channel attacks (SCAs). On the other hand, protecting interactive protocols against SCA is highly challenging because of their longer secrets (which include inputs and randomness), more...
Enhanced pqsigRM is a code-based hash-and-sign scheme proposed to the second National Institute of Standards and Technology call for post-quantum signatures. The scheme is based on the $(U,U+V)$-construction and it enjoys remarkably small signature lengths, about $1$KBytes for a security level of $128$ bits. Unfortunately we show that signatures leak information about the underlying $(U,U+V)$-structure. It allows to retrieve the private-key with~$100, 000$ signatures.
Online ride-sharing services (RSS) have become very popular owing to increased awareness of environmental concerns and as a response to increased traffic congestion. To request a ride, users submit their locations and route information for ride matching to a service provider (SP), leading to possible privacy concerns caused by leakage of users' location data. We propose QuickPool, an efficient SP-aided RSS solution that can obliviously match multiple riders and drivers simultaneously,...
Measuring the fluctuations of the clock phase of a target was identified as a leakage source on early electromagnetic side-channel investigations. Despite this, only recently was directly measuring the clock phase (or jitter) of digital signals from a target connected to being a source of exploitable leakage. As the phase of a clock output will be related to signal propagation delay through the target, and this propagation delay is related to voltage, this means that most digital devices...
Mathematically secured cryptographic implementations leak critical information in terms of power, EM emanations, etc. Several circuit-level countermeasures are proposed to hinder side channel leakage at the source. Circuit-level countermeasures (e.g., IVR, STELLAR, WDDL, etc) are often preferred as they are generic and have low overhead. They either dither the voltage randomly or attenuate the meaningful signature at $V_{DD}$ port. Although any digital implementation has two generic ports,...
There exists a mismatch between the theory and practice of cryptography in the presence of leakage. On the theoretical front, the bounded leakage model, where the adversary learns bounded-length but noiseless information about secret components, and the random probing model, where the adversary learns some internal values of a leaking implementation with some probability, are convenient abstractions to analyze the security of numerous designs. On the practical front, side-channel attacks...
This work builds approximate proximity searchable encryption. Secure biometric databases are the primary application. Prior work (Kuzu, Islam, and Kantarcioglu, ICDE 2012) combines locality-sensitive hashes, or LSHs, (Indyk, STOC ’98), and oblivious multimaps. The multimap associates LSH outputs as keywords to biometrics as values. When the desired result set is of size at most one, we show a new preprocessing technique and system called ProxCode that inserts shares of a linear secret...
Masking is a widely adopted countermeasure against side-channel analysis (SCA) that protects cryptographic implementations from information leakage. However, current masking schemes often incur significant overhead in terms of electronic cost. RAMBAM, a recently proposed masking technique that fits elegantly with the AES algorithm, offers ultra-low latency/area by utilizing redundant representations of finite field elements. This paper presents a comprehensive generalization of RAMBAM and...
Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage...
Dynamic searchable encryption (DSE) with forward and backward privacy reduces leakages in early-stage schemes. Security enhancement comes with a price -- maintaining updatable keyword-wise state information. State information, if stored locally, incurs significant client-side storage overhead for keyword-rich datasets, potentially hindering real-world deployments. We propose DISCO, a simple and efficient framework for designing DSE schemes using constant client state. DISCO combines...
Software based cryptographic implementations provide flexibility but they face performance limitations. In contrast, hardware based cryptographic accelerators utilize application-specific customization to provide real-time security solutions. Cryptographic instruction-set extensions (CISE) combine the advantages of both hardware and software based solutions to provide higher performance combined with the flexibility of atomic-level cryptographic operations. While CISE is widely used to...
We present a novel approach to small area and low-latency first-order masking in hardware. The core idea is to separate the processing of shares in time in order to achieve non-completeness. Resulting circuits are proven first-order glitch-extended PINI secure. This means the method can be straightforwardly applied to mask arbitrary functions without constraints which the designer must take care of. Furthermore we show that an implementation can benefit from optimization through EDA tools...
Private Set Union (PSU) protocol allows parties, each holding an input set, to jointly compute the union of the sets without revealing anything else. In the literature, scalable PSU protocols follow the “split-execute-assemble” paradigm (Kolesnikov et al., ASIACRYPT 2019); in addition, those fast protocols often use Oblivious Transfer as building blocks. Kolesnikov et al. (ASIACRYPT 2019) and Jia et al. (USENIX Security 2022), pointed out that certain security issues can be introduced in the...
Boolean Searchable Symmetric Encryption (SSE) enables secure outsourcing of databases to an untrusted server in encrypted form and allows the client to execute secure Boolean queries involving multiple keywords. The leakage of keyword pair result pattern (KPRP) in a Boolean search poses a significant threat, which reveals the intersection of documents containing any two keywords involved in a search and can be exploited by attackers to recover plaintext information about searched keywords...
This paper explores the problem of preventing length leakage in oblivious data access mechanisms with passive persistent adversaries. We show that designing mechanisms that prevent both length leakage and access pattern leakage requires navigating a three-way tradeoff between storage footprint, bandwidth footprint, and the information leaked to the adversary. We establish powerful lower bounds on achievable storage and bandwidth footprints for a variety of leakage profiles, and present...
The increasing importance of graph databases and cloud storage services prompts the study of private queries on graphs. We propose PathGES, a graph encryption scheme (GES) for single-pair shortest path queries. PathGES is efficient and mitigates the state-of-the-art attack by Falzon and Paterson (2022) on the GES by Ghosh, Kamara, and Tamassia (2021), while only incurring an additional logarithmic factor in storage overhead. PathGES leverages a novel data structure that minimizes leakage and...
Despite masking being a prevalent protection against passive side-channel attacks, implementing it securely in hardware remains a manual, challenging, and error-prone process. This paper introduces INDIANA, a comprehensive security verification tool for hardware masking. It provides a hardware verification framework, enabling a complete analysis of simulation-based security in the glitch-extended probing model, with cycle-accurate estimations for leakage probabilities in the random...
For security issue, data in cloud is encrypted. Searching encrypted data (without decryption) is a practical and important problem. Public key authenticated encryption with keyword search (PAEKS) enables the retrieval of encrypted data, while resisting the insider keyword guessing attacks (IKGAs). Most PAEKS schemes only work with single-receiver model, exhibiting very limited applicability. To address this concern, there have been researches on broadcast authenticated encryption with...
In our highly digitalized world, an adversary is not constrained to purely digital attacks but can monitor or influence the physical execution environment of a target computing device. Such side-channel or fault-injection analysis poses a significant threat to otherwise secure cryptographic implementations. Hence, it is important to consider additional adversarial capabilities when analyzing the security of cryptographic implementations besides the default black-box model. For side-channel...
Unclonable cryptography is concerned with leveraging the no-cloning principle to build cryptographic primitives that are otherwise impossible to achieve classically. Understanding the feasibility of unclonable encryption, one of the key unclonable primitives, satisfying indistinguishability security in the plain model has been a major open question in the area. So far, the existing constructions of unclonable encryption are either in the quantum random oracle model or are based on new...
Fault Injection (FI) attacks, which involve intentionally introducing faults into a system to cause it to behave in an unintended manner, are widely recognized and pose a significant threat to the security of cryptographic primitives implemented in hardware, making fault tolerance an increasingly critical concern. However, protecting cryptographic hardware primitives securely and efficiently, even with well-established and documented methods such as redundant computation, can be a...
Time-lock puzzles are unique cryptographic primitives that use computational complexity to keep information secret for some period of time, after which security expires. Unfortunately, twenty-five years after their introduction, current analysis techniques of time-lock primitives provide no sound mechanism to build multi-party cryptographic protocols which use expiring security as a building block. As pointed out recently in the peer-reviewed literature, current attempts at this problem...
We propose GraphOS, a system that allows a client that owns a graph database to outsource it to an untrusted server for storage and querying. It relies on doubly-oblivious primitives and trusted hardware to achieve a very strong privacy and efficiency notion which we call oblivious graph processing: the server learns nothing besides the number of graph vertexes and edges, and for each query its type and response size. At a technical level, GraphOS stores the graph on a doubly-oblivious data...
Storage of sensitive multi-dimensional arrays must be secure and efficient in storage and processing time. Searchable encryption allows one to trade between security and efficiency. Searchable encryption design focuses on building indexes, overlooking the crucial aspect of record retrieval. Gui et al. (PoPETS 2023) showed that understanding the security and efficiency of record retrieval is critical to understand the overall system. A common technique for improving security is partitioning...
Security proofs for cryptographic primitives typically assume operations are executed in the correct sequence; however, insecure implementations or software-level attacks can disrupt control flows, potentially invalidating these guarantees. To address this issue, we introduce a new security notion, IND-CFA, which formalizes decryption security in the presence of adversarially controlled execution flows. Using this notion, we investigate the control flows under which a cryptographic scheme...
Software solutions to address computational challenges are ubiquitous in our daily lives. One specific application area where software is often used is in embedded systems, which, like other digital electronic devices, are vulnerable to side-channel analysis attacks. Although masking is the most common countermeasure and provides a solid theoretical foundation for ensuring security, recent research has revealed a crucial gap between theoretical and real-world security. This shortcoming stems...
Searchable Symmetric Encryption (SSE) has opened up an attractive avenue for privacy-preserved processing of outsourced data on the untrusted cloud infrastructure. SSE aims to support efficient Boolean query processing with optimal storage and search overhead over large real databases. However, current constructions in the literature lack the support for multi-client search and dynamic updates to the encrypted databases, which are essential requirements for the widespread deployment of SSE...
Running machine learning algorithms on encrypted data is a way forward to marry functionality needs common in industry with the important concerns for privacy when working with potentially sensitive data. While there is already a growing field on this topic and a variety of protocols, mostly employing fully homomorphic encryption or performing secure multiparty computation (MPC), we are the first to propose a protocol that makes use of a specialized encryption scheme that allows to do secure...
Side-channel analysis is an important part of the security evaluations of hardware components and more specifically of those that include cryptographic algorithms. Profiling attacks are among the most powerful attacks as they assume the attacker has access to a clone device of the one under attack. Using the clone device allows the attacker to make a profile of physical leakages linked to the execution of algorithms. This work focuses on the characteristics of this profile and the...
Analyzing user data while protecting the privacy of individuals remains a big challenge. Trusted execution environments (TEEs) are a possible solution as they protect processes and Virtual Machines (VMs) against malicious hosts. However, TEEs can leak access patterns to code and to the data being processed. Furthermore, when data is stored in a TEE database, the data volume required to answer a query is another unwanted side channel that contains sensitive information. Both types of...
Structured Encryption (StE) enables a client to securely store and query data stored on an untrusted server. Recent constructions of StE have moved beyond basic queries, and now support large subsets of SQL. However, the security of these constructions is poorly understood, and no systematic analysis has been performed. We address this by providing the first leakage-abuse attacks against StE for SQL schemes. Our attacks can be run by a passive adversary on a server with access to some...
We present a solution to the open problem of designing a linear-time, unbiased and timing attack-resistant shuffling algorithm for fixed-weight sampling. Although it can be implemented without timing leakages of secret data in any architecture, we illustrate with ARMv7-M and ARMv8-A implementations; for the latter, we take advantage of architectural features such as NEON and conditional instructions, which are representative of features available on architectures targeting similar systems,...
Cache side-channels are a major threat to cryptographic implementations, particularly block ciphers. Traditional manual hardening methods transform block ciphers into Boolean circuits, a practice refined since the late 90s. The only existing automatic approach based on Boolean circuits achieves security but suffers from performance issues. This paper examines the use of Lookup Tables (LUTs) for automatic hardening of block ciphers against cache side-channel attacks. We present a novel method...
Searchable symmetric encryption (SSE) schemes provide users with the ability to perform keyword searches on encrypted databases without the need for decryption. While this functionality is advantageous, it introduces the potential for inadvertent information disclosure, thereby exposing SSE systems to various types of attacks. In this work, we introduce a new inference attack aimed at enhancing the query recovery accuracy of RefScore (presented at USENIX 2021). The proposed approach...
Searchable symmetric encryption has been vulnerable to inference attacks that rely on uniqueness in leakage patterns. However, many keywords in datasets lack distinctive leakage patterns, limiting the effectiveness of such attacks. The file injection attacks, initially proposed by Cash et al. (CCS 2015), have shown impressive performance with 100% accuracy and no prior knowledge requirement. Nevertheless, this attack fails to recover queries with underlying keywords not present in the...
Zero-Knowledge Proof (ZKP) technology marks a revolutionary advancement in the field of cryptography, enabling the verification of certain information ownership without revealing any specific details. This technology, with its paradoxical yet powerful characteristics, provides a solid foundation for a wide range of applications, especially in enhancing the privacy and security of blockchain technology and other cryptographic systems. As ZKP technology increasingly becomes a part of the...
As we enter 2024, the post-quantum cryptographic algorithm Dilithium, which emerged from the National Institute of Standards and Technology post-quantum cryptography competition, has now reached the deployment stage. This paper focuses on the practical security of Dilithium. We performed practical attacks on Dilithium2 on an STM32F4 platform. Our results indicate that an attack can be executed with just two signatures within five minutes, with a single signature offering a 60% probability of...
Banks publish daily a list of available securities/assets (axe list) to selected clients to help them effectively locate Long (buy) or Short (sell) trades at reduced financing rates. This reduces costs for the bank, as the list aggregates the bank's internal firm inventory per asset for all clients of long as well as short trades. However, this is somewhat problematic: (1) the bank's inventory is revealed; (2) trades of clients who contribute to the aggregated list, particularly those deemed...
In the rapidly evolving fields of encryption and blockchain technologies, the efficiency and security of cryptographic schemes significantly impact performance. This paper introduces a comprehensive framework for continuous benchmarking in one of the most popular cryptography Rust libraries, fastcrypto. What makes our analysis unique is the realization that automated benchmarking is not just a performance monitor and optimization tool, but it can be used for cryptanalysis and innovation...
A recent work from Eurocrypt 2023 suggests that prime-field masking has excellent potential to improve the efficiency vs. security tradeoff of masked implementations against side-channel attacks, especially in contexts where physical leakages show low noise. We pick up on the main open challenge that this seed result leads to, namely the design of an optimized prime cipher able to take advantage of this potential. Given the interest of tweakable block ciphers with cheap inverses in many...
This paper presents SNOW-SCA, the first power side-channel analysis (SCA) attack of a 5G mobile communication security standard candidate, SNOW-V, running on a 32-bit ARM Cortex-M4 microcontroller. First, we perform a generic known-key correlation (KKC) analysis to identify the leakage points. Next, a correlation power analysis (CPA) attack is performed, which reduces the attack complexity to two key guesses for each key byte. The correct secret key is then uniquely identified utilizing...
Two recent proposals by Bernstein and Pornin emphasize the use of deterministic signatures in DSA and its elliptic curve-based variants. Deterministic signatures derive the required ephemeral key value in a deterministic manner from the message to be signed and the secret key instead of using random number generators. The goal is to prevent severe security issues, such as the straight-forward secret key recovery from low quality random numbers. Recent developments have raised skepticism...
Secure two-party computation (2PC) in the RAM model has attracted huge attention in recent years. Most existing results only support semi-honest security, with the exception of Keller and Yanai (Eurocrypt 2018) with very high cost. In this paper, we propose an efficient RAM-based 2PC protocol with active security and one-bit leakage. 1) We propose an actively secure protocol for distributed point function (DPF), with one-bit leakage, that is essentially as efficient as the...
Hardening microprocessors against side-channel attacks is a critical aspect of ensuring their security. A key step in this process is identifying and mitigating “leaky" hardware modules, which leak information during the execution of cryptographic algorithms. In this paper, we explore how different leakage detection methods, the Side-channel Vulnerability Factor (SVF) and the Test Vector Leakage Assessment (TVLA), contribute to hardening of microprocessors. We conduct experiments on two...
In this work we consider the task of designing information-theoretic MPC protocols for which the state of a given party can be recovered from a small amount of parties, a property we refer to as local repairability. This is useful when considering MPC over dynamic settings where parties leave and join a computation, a scenario that has gained notable attention in recent literature. Thanks to the results of (Cramer et al. EUROCRYPT'00), designing such protocols boils down to...
In this work, we present two generic frameworks for leakage-resilient attribute-based encryption (ABE), which is an improved version of ABE that can be proven secure even when part of the secret key is leaked. Our frameworks rely on the standard assumption ($k$-Lin) over prime-order groups. The first framework is designed for leakage-resilient ABE with attribute-hiding in the bounded leakage model. Prior to this work, no one had yet derived a generic leakage-resilient ABE framework with...
Symmetric ciphers operating in (small or mid-size) prime fields have been shown to be promising candidates to maintain security against low-noise (or even noise-free) side-channel leakage. In order to design prime ciphers that best trade physical security and implementation efficiency, it is essential to understand how side-channel security evolves with the field size (i.e., scaling trends). Unfortunately, it has also been shown that such a scaling trend depends on the leakage functions...
We report on efficient and secure hardware implementation techniques for the FIPS 205 SLH-DSA Hash-Based Signature Standard. We demonstrate that very significant overall performance gains can be obtained from hardware that optimizes the padding formats and iterative hashing processes specific to SLH-DSA. A prototype implementation, SLotH, contains Keccak/SHAKE, SHA2-256, and SHA2-512 cores and supports all 12 parameter sets of SLH-DSA. SLotH also supports side-channel secure PRF computation...
FuLeeca is a signature scheme submitted to the recent NIST call for additional signatures. It is an efficient hash-and-sign scheme based on quasi-cyclic codes in the Lee metric and resembles the lattice-based signature Falcon. FuLeeca proposes a so-called concentration step within the signing procedure to avoid leakage of secret-key information from the signatures. However, FuLeeca is still vulnerable to learning attacks, which were first observed for lattice-based schemes. We present three...
Side channel attacks are devastating attacks targeting cryptographic implementations. To protect against these attacks, various countermeasures have been proposed -- in particular, the so-called masking scheme. Masking schemes work by hiding sensitive information via secret sharing all intermediate values that occur during the evaluation of a cryptographic implementation. Over the last decade, there has been broad interest in designing and formally analyzing such schemes. The random probing...
A leakage-resilient circuit for $f:\{0,1\}^n\to\{0,1\}^m$ is a randomized Boolean circuit $C$ mapping a randomized encoding of an input $x$ to an encoding of $y=f(x)$, such that applying any leakage function $L\in \cal L$ to the wires of $C$ reveals essentially nothing about $x$. A leakage-tolerant circuit achieves the stronger guarantee that even when $x$ and $y$ are not protected by any encoding, the output of $L$ can be simulated by applying some $L'\in \cal L$ to $x$ and $y$ alone....
This paper proposes POPSTAR, a new lightweight protocol for the private computation of heavy hitters, also known as a private threshold reporting system. In such a protocol, the users provide input measurements, and a report server learns which measurements appear more than a pre-specified threshold. POPSTAR follows the same architecture as STAR (Davidson et al, CCS 2022) by relying on a helper randomness server in addition to a main server computing the aggregate heavy hitter statistics....
Decoy accounts are often used as an indicator of the compromise of sensitive data, such as password files. An attacker targeting only specific known-to-be-real accounts might, however, remain undetected. A more effective method proposed by Juels and Rivest at CCS'13 is to maintain additional fake passwords associated with each account. An attacker who gains access to the password file is unable to tell apart real passwords from fake passwords, and the attempted usage of a false password...