
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas - Basics of MultiIndex
MultiIndex is also called Hierarchical Indexing, it is a powerful feature in pandas that allows you to work with higher-dimensional data in lower-dimensional structures like Series (1D) and DataFrame (2D). With MultiIndex, pandas objects have multiple levels of index labels. Using MultiIndex, you can represent and manipulate data with multiple levels of indexing, making it easier to handle complex data sets efficiently.
In this tutorial, we will learn about the basics of MultiIndex, including how to create MultiIndexed Series and DataFrames, perform basic indexing on MultiIndex axes, and align data using MultiIndex.
Creating MultiIndexed Pandas Objects
There are several ways to create a MultiIndex object in pandas, including from lists of arrays, tuples, products of iterables, or directly from a DataFrame.
Following are the list of helper methods to construct a new MultiIndex −
MultiIndex.from_arrays()
MultiIndex.from_product()
MultiIndex.from_tuples()
MultiIndex.from_frame()
Creating MultiIndex from Lists of Arrays
By using the pandas.MultiIndex.from_arrays() method we can create MultiIndex from list of arrays.
Example: Creating MultiIndexed Series from List of lists
The following example demonstrates the creation of MultiIndexed Series object using the pandas.MultiIndex.from_arrays() method.
import pandas as pd import numpy as np # Create a 2D list list_2d = [["BMW", "BMW", "Lexus", "Lexus", "foo", "foo", "Audi", "Audi"], ["1", "2", "1", "2", "1", "2", "1", "2"]] # Create a MultiIndex object index = pd.MultiIndex.from_arrays(list_2d, names=["first", "second"]) # Creating a MultiIndexed Series s = pd.Series(np.random.randn(8), index=index) # Display the output Series print("Output MultiIndexed Series:\n",s)
Following is the output of the above code −
Output MultiIndexed Series:
First | Second | |
---|---|---|
BMW | 1 | -1.334159 |
2 | -0.233286 | |
Lexus | 1 | 1.167558 |
2 | -0.875364 | |
foo | 1 | -0.338715 |
2 | 0.021517 | |
Audi | 1 | -0.272688 |
2 | 0.588359 |
Creating MultiIndex from Tuples
Pandas MultiIndex.from_tuples() method is used to convert list of tuples to MultiIndex.
Example: Creating MultiIndexed DataFrame from Tuples
This example demonstrates the creation of MultiIndexed DataFrame object using the pandas.MultiIndex.from_tuples() method.
import pandas as pd import numpy as np # Create a 2D list list_2d = [["BMW", "BMW", "Lexus", "Lexus", "foo", "foo", "Audi", "Audi"], ["1", "2", "1", "2", "1", "2", "1", "2"]] # Create a MultiIndex object tuples = list(zip(*list_2d )) index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) # Creating a MultiIndexed DataFrame df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=["A", "B", "C", "D"]) # Display the output Series print("Output MultiIndexed DataFrame:\n", df)
Following is the output of the above code −
Output MultiIndexed DataFrame:
A | B | C | D | ||
---|---|---|---|---|---|
First | Second | ||||
BMW | 1 | -0.347846 | 1.011760 | -1.224244 | -1.225259 |
2 | 0.237115 | -1.316433 | 0.962960 | -1.008623 | |
Lexus | 1 | -1.806209 | 1.038973 | 0.246994 | -1.596616 |
2 | -0.325284 | -0.264822 | -0.735029 | 0.377645 | |
foo | 1 | 0.243560 | -0.408718 | 0.717466 | -1.446259 |
2 | -0.817704 | 0.711299 | 2.567860 | -1.054871 | |
Audi | 1 | 0.583519 | -0.007577 | 0.828928 | -0.826645 |
2 | 2.454626 | 1.558045 | 0.981507 | -0.148554 |
Creating MultiIndex Using from_product()
The Pandas MultiIndex.from_product() method is uses the cartesian product of multiple iterables to create MultiIndex. It is useful when you want every possible combination of elements from two or more iterables.
Example: Creating MultiIndexed DataFrame Using from_product()
This example demonstrates how to create the MultiIndexed DataFrame using the pandas MultiIndex.from_product() method.
import pandas as pd import numpy as np # Create a list of lits iterable = [[1, 2, 3], ['green', 'black']] # Create a MultiIndex object index = pd.MultiIndex.from_product(iterable, names=["number", "color"]) # Creating a MultiIndexed DataFrame df = pd.DataFrame(np.random.randn(6, 3), index=index, columns=["A", "B", "C"]) # Display the output Series print("Output MultiIndexed DataFrame:\n", df)
Following is the output of the above code −
Output MultiIndexed DataFrame:
A | B | C | ||
---|---|---|---|---|
Number | Color | |||
1 | green | -1.174910 | -0.861695 | -0.026601 |
black | -2.824289 | 0.674870 | 1.132675 | |
2 | green | -0.285381 | -0.104188 | 1.993371 |
black | -0.926109 | -0.579404 | -1.119692 | |
3 | green | -3.278989 | -0.873407 | -1.359360 |
black | 0.735492 | 0.066735 | -0.099568 |
Creating MultiIndex from DataFrame
The Pandas MultiIndex.from_frame() method is used to create a MultiIndex from a DataFrame.
Example: Creating MultiIndex from DataFrame
This example uses the pd.MultiIndex.from_frame() method to directly create a MultiIndex object from a DataFrame.
import pandas as pd import numpy as np # Create a DataFrame df = pd.DataFrame([["BMW", 1], ["BMW", 2], ["Lexus", 1],["Lexus", 2]], columns=["first", "second"]) # Create a MultiIndex object index = pd.MultiIndex.from_frame(df) # Creating a MultiIndexed DataFrame df = pd.DataFrame(np.random.randn(4, 3), index=index, columns=["A", "B", "C"]) # Display the output Series print("Output MultiIndexed DataFrame:\n", df)
Following is the output of the above code −
Output MultiIndexed DataFrame:
A | B | C | ||
---|---|---|---|---|
First | Second | |||
BMW | 1 | -0.662779 | -0.270775 | 0.129462 |
2 | -0.251308 | 1.920896 | 0.756204 | |
Lexus | 1 | -0.466133 | 0.590872 | 0.252439 |
2 | -1.226775 | -0.239043 | -0.023214 |
Basic Indexing on Axis with MultiIndex
Indexing with MultiIndex used to slice and select data in more flexible ways compared to a regular index.
Example: Selecting Data by Index Level
Here is a basic example demonstrating the indexing MultiIndexed Series object using the .loc[] method.
import pandas as pd import numpy as np # Creating MultiIndex from arrays arrays = [["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"]] # Creating a list of tuples from the arrays tuples = list(zip(*arrays)) # Creating a MultiIndex from tuples index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) # Creating a Series with MultiIndex s = pd.Series([2, 3, 1, 4, 6, 1, 7, 8], index=index) print("MultiIndexed Series:\n", s) # Indexing the MultiIndexed Series using .loc[] print("\nSelecting data at index ('bar', 'one') and column 'A':") print(s.loc[('bar', 'one')])
Following is the output of the above code −
MultiIndexed Series:
First | Second | |
---|---|---|
bar | one | 2 |
two | 2 | |
one | 1 | 1 |
two | 4 | |
one | 1 | 6 |
two | 1 | |
one | 1 | 7 |
two | 8 |