Python Pandas - Interpolation of Missing Values



Interpolation is a powerful technique in Pandas that used for handling the missing values in a dataset. This technique estimates the missing values based on other data points of the dataset. Pandas provides the interpolate() method for both DataFrame and Series objects to fill in missing values using various interpolation methods.

In this tutorial, we will learn about the interpolate() methods in Pandas for filling the missing values in a time series data, numeric data, and more using the different interpolation methods.

Basic Interpolation

The Pandas interpolate() method of the both DataFrame and Series objects is used to fills the missing values using different Interpolation strategies. By default, Pandas automatically uses linear interpolation as the default method.

Example

Here is a basic example of calling the interpolate() method for filling the missing values.

Open Compiler
import numpy as np import pandas as pd df = pd.DataFrame({"A": [1.1, np.nan, 3.5, np.nan, np.nan, np.nan, 6.2, 7.9], "B": [0.25, np.nan, np.nan, 4.7, 10, 14.7, 1.3, 9.2], }) print("Original DataFrame:") print(df) # Using the interpolate() method result = df.interpolate() print("\nResultant DataFrame after applying the interpolation:") print(result)

Following is the output of the above code −

Original DataFrame:
A B
0 1.1 0.25
1 NaN NaN
2 3.5 NaN
3 NaN 4.70
4 NaN 10.00
5 NaN 14.70
6 6.2 1.30
7 7.9 9.20
Resultant DataFrame after applying the interpolation:
A B
0 1.100 0.250000
1 2.300 1.733333
2 3.500 3.216667
3 4.175 4.700000
4 4.850 10.000000
5 5.525 14.700000
6 6.200 1.300000
7 7.900 9.200000

Different Interpolating Methods

Pandas supports several interpolation methods, including linear, polynomial, pchip, akima, spline, and more. These methods provide flexibility for filling the missing values depending on the nature of your data.

Example

The following example demonstrates using the interpolate() method with the barycentric interpolation technique.

Open Compiler
import numpy as np import pandas as pd df = pd.DataFrame({"A": [1.1, np.nan, 3.5, np.nan, np.nan, np.nan, 6.2, 7.9], "B": [0.25, np.nan, np.nan, 4.7, 10, 14.7, 1.3, 9.2], }) print("Original DataFrame:") print(df) # Applying the interpolate() with Barycentric method result = df.interpolate(method='barycentric') print("\nResultant DataFrame after applying the interpolation:") print(result)

Following is the output of the above code −

Original DataFrame:
i A B
0 1.1 0.25
1 NaN NaN
2 3.5 NaN
3 NaN 4.70
4 NaN 10.00
5 NaN 14.70
6 6.2 1.30
7 7.9 9.20
Resultant DataFrame after applying the interpolation:
A B
0 1.100000 0.250000
1 2.596429 57.242857
2 3.500000 24.940476
3 4.061429 4.700000
4 4.531429 10.000000
5 5.160714 14.700000
6 6.200000 1.300000
7 7.900000 9.200000

Handling Limits in Interpolation

By default, Pandas interpolation fills all the missing values, but you can limit how many consecutive NaN values are filled using the limit parameter of the interpolate() method.

Example

The following example demonstrates filling the missing values of a Pandas DataFrame by limiting the consecutive fills using the limit parameter of the interpolate() method.

Open Compiler
import numpy as np import pandas as pd df = pd.DataFrame({"A": [1.1, np.nan, 3.5, np.nan, np.nan, np.nan, 6.2, 7.9], "B": [0.25, np.nan, np.nan, 4.7, 10, 14.7, 1.3, 9.2], }) print("Original DataFrame:") print(df) # Applying the interpolate() with limit result = df.interpolate(method='spline', order=2, limit=1) print("\nResultant DataFrame after applying the interpolation:") print(result)

Following is the output of the above code −

Original DataFrame:
i A B
0 1.1 0.25
1 NaN NaN
2 3.5 NaN
3 NaN 4.70
4 NaN 10.00
5 NaN 14.70
6 6.2 1.30
7 7.9 9.20
Resultant DataFrame after applying the interpolation:
i A B
0 1.100000 0.250000
1 2.231383 -1.202052
2 3.500000 NaN
3 4.111529 4.700000
4 NaN 10.000000
5 NaN 14.700000
6 6.200000 1.300000
7 7.900000 9.200000

Interpolating Time Series Data

Interpolation can be applied to the Pandas time series data as well. It is useful when filling gaps in missing data points over time.

Example

Example statement −

Open Compiler
import numpy as np import pandas as pd indx = pd.date_range("2024-01-01", periods=10, freq="D") data = np.random.default_rng(2).integers(0, 10, 10).astype(np.float64) s = pd.Series(data, index=indx) s.iloc[[1, 2, 5, 6, 9]] = np.nan print("Original Series:") print(s) result = s.interpolate(method="time") print("\nResultant Time Series after applying the interpolation:") print(result)

Following is the output of the above code −

Original Series:
Date Value
2024-01-01 8.0
2024-01-02 NaN
2024-01-03 NaN
2024-01-04 2.0
2024-01-05 4.0
2024-01-06 NaN
2024-01-07 NaN
2024-01-08 0.0
2024-01-09 3.0
2024-01-10 NaN
Resultant Time Series after applying the interpolation:
Date Value
2024-01-01 8.000000
2024-01-02 6.000000
2024-01-03 4.000000
2024-01-04 2.000000
2024-01-05 4.000000
2024-01-06 2.666667
2024-01-07 1.333333
2024-01-08 0.000000
2024-01-09 3.000000
2024-01-10 3.000000
Advertisements