Python Pandas - Binary Comparison Operations
Binary comparison operations in Pandas are used to compare elements in a Pandas Data structure such as, Series or DataFrame objects with a scalar value or another Data structure. These operations return Boolean results that indicate the outcome of each comparison, and these operations are useful for for filtering, condition-based operations, and data analysis.
In this tutorial, you will learn how to perform binary comparison operations like less than, greater than, equal to, and others, on a Pandas Data structure with scalar values and between other DataFrames/Series objects.
Binary Comparison Operators in Pandas
Binary comparison operators are used to compare elements in a Pandas Series or DataFrame with a scalar value. The result of these operations is a boolean Data structure where True indicates the given condition is satisfied and False for not.
Here is a list of common binary comparison operators that can be used on a Pandas DataFrame or Series −
<: Checks if each element is less than the given value.
>: Checks if each element is greater than the given value.
<=: Checks if each element is less than or equal to the given value.
>=: Checks if each element is greater than or equal to the given value.
==: Checks if each element is equal to the given value.
!=: Checks if each element is not equal to the given value.
Example
The following example demonstrates how to apply comparison operators to a Pandas DataFrame with a scalar value.
import pandas as pd
data = {'A': [1, 5, 3, 8], 'B': [4, 6, 2, 9]}
df = pd.DataFrame(data)
print("Input DataFrame:\n", df)
print("\nLess than 5:\n", df < 5)
print("\nGreater than 5:\n", df > 5)
print("\nLess than or equal to 5:\n", df <= 5)
print("\nGreater than or equal to 5:\n", df >= 5)
print("\nEqual to 5:\n", df == 5)
print("\nNot equal to 5:\n", df != 5)
Following is the output of the above code −
Input DataFrame:
|
A |
B |
0 |
1 |
4 |
1 |
5 |
6 |
2 |
3 |
2 |
3 |
8 |
9 |
Less than 5:
|
A |
B |
0 |
True |
True |
1 |
False |
False |
2 |
True |
True |
3 |
False |
False |
Greater than 5:
|
A |
B |
0 |
False |
False |
1 |
False |
True |
2 |
False |
False |
3 |
True |
True |
Less than or equal to 5:
|
A |
B |
0 |
True |
True |
1 |
True |
False |
2 |
True |
True |
3 |
False |
False |
Greater than or equal to 5:
|
A |
B |
0 |
False |
False |
1 |
True |
True |
2 |
False |
False |
3 |
True |
True |
Equal to 5:
|
A |
B |
0 |
False |
False |
1 |
True |
False |
2 |
False |
False |
3 |
False |
False |
Not equal to 5:
|
A |
B |
0 |
True |
True |
1 |
False |
True |
2 |
True |
True |
3 |
True |
True |
Binary Comparison Functions in Pandas
In addition to the above operators, Pandas provides various functions to perform binary comparison operations on Pandas Data structure, by providing the additional options for customization, like selecting the axis and specifying levels for the MultiIndex objects.
Following is the list of binary comparison functions in Pandas −
S.No |
Function |
Description |
1 |
lt(other[, axis, level]) |
Element-wise less than comparison. |
2 |
gt(other[, axis, level]) |
Element-wise greater than comparison. |
3 |
le(other[, axis, level]) |
Element-wise less than or equal comparison. |
4 |
ge(other[, axis, level]) |
Element-wise greater than or equal comparison. |
5 |
ne(other[, axis, level]) |
Element-wise not equal comparison. |
6 |
eq(other[, axis, level]) |
Element-wise equal comparison. |
Example: Binary Comparison Operations on Pandas Series
This example demonstrates the applying the binary comparison functions between a Pandas Series and a scalar value.
import pandas as pd
s = pd.Series([10, 20, 30, 40, 50])
print("Pandas Series:\n", s)
print("\nLess than 25:\n", s.lt(25))
print("\nGreater than 25:\n", s.gt(25))
print("\nLess than or equal to 30:\n", s.le(30))
print("\nGreater than or equal to 40:\n", s.ge(40))
print("\nNot equal to 30:\n", s.ne(30))
print("\nEqual to 50:\n", s.eq(50))
Following is the output of the above code −
Pandas Series:
0 10
1 20
2 30
3 40
4 50
dtype: int64
Less than 25:
0 True
1 True
2 False
3 False
4 False
dtype: bool
Greater than 25:
0 False
1 False
2 True
3 True
4 True
dtype: bool
Less than or equal to 30:
0 True
1 True
2 True
3 False
4 False
dtype: bool
Greater than or equal to 40:
0 False
1 False
2 False
3 True
4 True
dtype: bool
Not equal to 30:
0 True
1 True
2 False
3 True
4 True
dtype: bool
Equal to 50:
0 False
1 False
2 False
3 False
4 True
dtype: bool
Example: Binary Comparison Operations on Pandas DataFrame
Similarly above example, this will perform binary comparison operations between a DataFrame and a scalar value using the binary comparison functions in Pandas.
import pandas as pd
data = {'A': [10, 20, 30], 'B': [40, 50, 60]}
df = pd.DataFrame(data)
print("DataFrame:\n", df)
print("\nLess than 25:\n", df.lt(25))
print("\nGreater than 50:\n", df.gt(50))
print("\nEqual to 30:\n", df.eq(30))
print("\nLess than or equal to 30:\n", df.le(30))
print("\nGreater than or equal to 40:\n", df.ge(40))
print("\nNot equal to 30:\n", df.ne(30))
Following is the output of the above code −
DataFrame:
|
A |
B |
0 |
10 |
40 |
1 |
20 |
50 |
2 |
30 |
60 |
Less than 25:
|
A |
B |
0 |
True |
False |
1 |
True |
False |
2 |
False |
False |
Greater than 50:
|
A |
B |
0 |
False |
False |
1 |
False |
False |
2 |
False |
True |
Equal to 30:
|
A |
B |
0 |
False |
False |
1 |
False |
False |
2 |
True |
False |
Less than or equal to 30:
|
A |
B |
0 |
True |
False |
1 |
True |
False |
2 |
True |
False |
Greater than or equal to 40:
|
A |
B |
0 |
False |
True |
1 |
False |
True |
2 |
False |
True |
Not equal to 30:
|
A |
B |
0 |
True |
True |
1 |
True |
True |
2 |
False |
True |
Example: Binary Comparison Between Two Pandas Data Structures
This example compares the two DataFrames element-wise using the eq(), ne(), lt(), gt(), le(), and gt() functions.
import pandas as pd
df1 = pd.DataFrame({'A': [1, 0, 3], 'B': [9, 5, 6]})
df2 = pd.DataFrame({'A': [1, 2, 1], 'B': [6, 5, 4]})
print("DataFrame 1:\n", df1)
print("\nDataFrame 2:\n", df2)
print("\nEqual :\n", df1.eq(df2))
print("\nNot Equal:\n", df1.ne(df2))
print("\ndf1 Less than df2:\n", df1.lt(df2))
print("\ndf1 Greater than df2:\n", df1.gt(df2))
print("\ndf1 Less than or equal to df2:\n", df1.le(df2))
print("\ndf1 Greater than or equal to df2:\n", df1.ge(df2))
Following is the output of the above code −
DataFrame 1:
DataFrame 2:
Equal :
|
A |
B |
0 |
True |
False |
1 |
False |
True |
2 |
False |
False |
Not Equal:
|
A |
B |
0 |
False |
True |
1 |
True |
False |
2 |
True |
True |
df1 Less than df2:
|
A |
B |
0 |
False |
False |
1 |
True |
False |
2 |
False |
False |
df1 Greater than df2:
|
A |
B |
0 |
False |
True |
1 |
False |
False |
2 |
True |
True |
df1 Less than or equal to df2:
|
A |
B |
0 |
True |
False |
1 |
True |
True |
2 |
False |
False |
df1 Greater than or equal to df2:
|
A |
B |
0 |
True |
True |
1 |
False |
True |
2 |
True |
True |