Python Pandas - Panel



A panel is a 3D container of data. The term Panel data is derived from econometrics and is partially responsible for the name pandas − pan(el)-da(ta)-s.

The Panel class is deprecated and has been removed in recent versions of pandas. The recommended way to represent 3-D data is with a MultiIndex on a DataFrame via the to_frame() method or with the xarray package. pandas provides a to_xarray() method to automate this conversion.

The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data. They are −

  • items: axis 0, each item corresponds to a DataFrame contained inside.

  • major_axis: axis 1, it is the index (rows) of each of the DataFrames.

  • minor_axis: axis 2, it is the columns of each of the DataFrames.

pandas.Panel()

A Panel can be created using the following constructor −

pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)

The parameters of the constructor are as follows −

Parameter Description
data Data takes various forms like ndarray, series, map, lists, dict, constants and also another DataFrame
items axis=0
major_axis axis=1
minor_axis axis=2
dtype Data type of each column
copy Copy data. Default, false

Create Panel

A Panel can be created using multiple ways like −

  • From ndarrays
  • From dict of DataFrames

From 3D ndarray

# creating an empty panel import pandas as pd import numpy as np data = np.random.rand(2,4,5) p = pd.Panel(data) print(p)

Its output is as follows −

<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 4

Note: Observe the dimensions of the empty panel and the above panel, all the objects are different.

From dict of DataFrame Objects

#creating an empty panel import pandas as pd import numpy as np data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)), 'Item2' : pd.DataFrame(np.random.randn(4, 2))} p = pd.Panel(data) print(p)

Its output is as follows −

Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2

Create an Empty Panel

An empty panel can be created using the Panel constructor as follows −

#creating an empty panel import pandas as pd p = pd.Panel() print(p)

Its output is as follows −

<class 'pandas.core.panel.Panel'>
Dimensions: 0 (items) x 0 (major_axis) x 0 (minor_axis)
Items axis: None
Major_axis axis: None
Minor_axis axis: None

Selecting the Data from Panel

Select the data from the panel using −

  • Items
  • Major_axis
  • Minor_axis

Using Items

# creating an empty panel import pandas as pd import numpy as np data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)), 'Item2' : pd.DataFrame(np.random.randn(4, 2))} p = pd.Panel(data) print(p['Item1'])

Its output is as follows −

            0          1          2
0    0.488224  -0.128637   0.930817
1    0.417497   0.896681   0.576657
2   -2.775266   0.571668   0.290082
3   -0.400538  -0.144234   1.110535

We have two items, and we retrieved item1. The result is a DataFrame with 4 rows and 3 columns, which are the Major_axis and Minor_axis dimensions.

Using major_axis

Data can be accessed using the method panel.major_axis(index).

# creating an empty panel import pandas as pd import numpy as np data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)), 'Item2' : pd.DataFrame(np.random.randn(4, 2))} p = pd.Panel(data) print(p.major_xs(1))

Its output is as follows −

      Item1       Item2
0   0.417497    0.748412
1   0.896681   -0.557322
2   0.576657       NaN

Using minor_axis

Data can be accessed using the method panel.minor_axis(index).

# creating an empty panel import pandas as pd import numpy as np data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)), 'Item2' : pd.DataFrame(np.random.randn(4, 2))} p = pd.Panel(data) print(p.minor_xs(1))

Its output is as follows −

       Item1       Item2
0   -0.128637   -1.047032
1    0.896681   -0.557322
2    0.571668    0.431953
3   -0.144234    1.302466

Note: Observe the changes in the dimensions.

Advertisements