
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas - Statistical Functions
In data analysis, understanding the patterns and relationships within your data is crucial. Statistical methods in Pandas help to extract meaningful information, patterns and relationships from data, enabling you to make decisions and analyzing the behavior of data.
In this tutorial, we will explore some key statistical functions available in Pandas. These functions are designed to help you summarize and understand your data in different ways. Whether you want to measure changes over time, assess relationships between variables, or rank your data, Pandas provides the tools you need.
Analyzing Fractional Change
The pct_change() function in Pandas calculates the fractional change between the current and a prior element. It is a valuable tool for understanding how data evolves over time, commonly used in financial data analysis.
Example
Following is the example of calculating the fractional change between the current and a prior element of Pandas Series and DataFrame using the pct_change() method.
import pandas as pd import numpy as np s = pd.Series([1,2,3,4,5,4]) print(s.pct_change()) df = pd.DataFrame(np.random.randn(5, 2)) print(df.pct_change())
Its output is as follows −
0 NaN 1 1.000000 2 0.500000 3 0.333333 4 0.250000 5 -0.200000 dtype: float64 0 1 0 NaN NaN 1 -15.151902 0.174730 2 -0.746374 -1.449088 3 -3.582229 -3.165836 4 15.601150 -1.860434
By default, the pct_change() operates on columns; if you want to apply the same row wise, then use axis=1() argument.
Understanding Covariance
Covariance measures how two variables change together. In Pandas, the cov() method computes the covariance between two Series objects or across all pairs of columns in a DataFrame.
Example
Here is the example of calculating the covariance between two Series objects using the Series.cov() method.
import pandas as pd import numpy as np s1 = pd.Series(np.random.randn(10)) s2 = pd.Series(np.random.randn(10)) print(s1.cov(s2))
Its output is as follows −
0.02429227824398636
Example
Covariance method when applied on a DataFrame, computes cov() between all the columns.
import pandas as pd import numpy as np frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e']) print(frame['a'].cov(frame['b'])) print(frame.cov())
Its output is as follows −
-0.58312921152741437 a b c d e a 1.780628 -0.583129 -0.185575 0.003679 -0.136558 b -0.583129 1.297011 0.136530 -0.523719 0.251064 c -0.185575 0.136530 0.915227 -0.053881 -0.058926 d 0.003679 -0.523719 -0.053881 1.521426 -0.487694 e -0.136558 0.251064 -0.058926 -0.487694 0.960761
Note: Observe the cov between a and b column in the first statement and the same is the value returned by cov on DataFrame.
Measuring Correlation
Correlation shows the linear relationship between any two array of values (series). Pandas corr() function supports different correlation methods, including Pearson (default), Spearman, and Kendall.
Example
This example calculates the correlation between two columns of a DataFrame using the corr() function.
import pandas as pd import numpy as np frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e']) print(frame['a'].corr(frame['b'])) print(frame.corr())
Its output is as follows −
-0.383712785514 a b c d e a 1.000000 -0.383713 -0.145368 0.002235 -0.104405 b -0.383713 1.000000 0.125311 -0.372821 0.224908 c -0.145368 0.125311 1.000000 -0.045661 -0.062840 d 0.002235 -0.372821 -0.045661 1.000000 -0.403380 e -0.104405 0.224908 -0.062840 -0.403380 1.000000
If any non-numeric column is present in the DataFrame, it is excluded automatically.
Ranking Data
The rank() function assigns ranks to elements in a Series or DataFrame. In cases where multiple elements have the same value, it assigns the average rank by default, but this behavior can be adjusted.
Example
Following is the example of calculating the numerical data ranks of the Series elements using the rank() method.
import pandas as pd import numpy as np s = pd.Series(np.random.randn(5), index=list('abcde')) s['d'] = s['b'] # so there's a tie print(s.rank())
Its output is as follows −
a 1.0 b 3.5 c 2.0 d 3.5 e 5.0 dtype: float64
Rank optionally takes a parameter ascending which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank. It supports different tie-breaking methods, specified with the method parameter −
average: average rank of tied group
min: lowest rank in the group
max: highest rank in the group
first: ranks assigned in the order they appear in the array