default search action
Goele Pipeleers
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j29]Ajay Suresha Sathya, Herman Bruyninckx, Wilm Decré, Goele Pipeleers:
Efficient Constrained Dynamics Algorithms Based on an Equivalent LQR Formulation Using Gauss' Principle of Least Constraint. IEEE Trans. Robotics 40: 729-749 (2024) - 2023
- [c70]Ruan Viljoen, Johan Ubbink, Goele Pipeleers, Wilm Decré, Erwin Aertbeliën, Joris De Schutter:
Enhancing Constraint-Based Robot Task Specification with Dual Controller and Estimator Synthesis. CASE 2023: 1-8 - [i1]Ajay Suresha Sathya, Herman Bruyninckx, Wilm Decré, Goele Pipeleers:
Efficient Constrained Dynamics Algorithms based on an Equivalent LQR Formulation using Gauss' Principle of Least Constraint. CoRR abs/2310.00688 (2023) - 2022
- [j28]Alejandro Astudillo, Joris Gillis, Moritz Diehl, Wilm Decré, Goele Pipeleers, Jan Swevers:
Position and Orientation Tunnel-Following NMPC of Robot Manipulators Based on Symbolic Linearization in Sequential Convex Quadratic Programming. IEEE Robotics Autom. Lett. 7(2): 2867-2874 (2022) - [c69]David Kiessling, Andrea Zanelli, Armin Nurkanovic, Joris Gillis, Moritz Diehl, Melanie N. Zeilinger, Goele Pipeleers, Jan Swevers:
A Feasible Sequential Linear Programming Algorithm with Application to Time-Optimal Path Planning Problems. CDC 2022: 1196-1203 - [c68]Ajay Suresha Sathya, Wilm Decré, Goele Pipeleers, Jan Swevers:
A Simple Formulation for Fast Prioritized Optimal Control of Robots using Weighted Exact Penalty Functions. ICRA 2022: 5262-5269 - [c67]Ajay Suresha Sathya, Alejandro Astudillo, Joris Gillis, Wilm Decré, Goele Pipeleers, Jan Swevers:
Tasho: A Python Toolbox for Rapid Prototyping and Deployment of Optimal Control Problem-Based Complex Robot Motion Skills. IROS 2022: 9700-9707 - [d1]Alejandro Astudillo, Joris Gillis, Moritz Diehl, Wilm Decré, Goele Pipeleers, Jan Swevers:
Example of the implementation of the SCQP method using the lin operator. IEEE DataPort, 2022 - 2021
- [j27]Ben Hermans, Goele Pipeleers, Panagiotis Patrinos:
A penalty method for nonlinear programs with set exclusion constraints. Autom. 127: 109500 (2021) - [j26]Ajay Suresha Sathya, Goele Pipeleers, Wilm Decré, Jan Swevers:
A Weighted Method for Fast Resolution of Strictly Hierarchical Robot Task Specifications Using Exact Penalty Functions. IEEE Robotics Autom. Lett. 6(2): 3057-3064 (2021) - [c66]Daniele Ronzani, Joris Gillis, Goele Pipeleers, Jan Swevers:
ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. AMC 2021: 68-75 - [c65]Dries Dirckx, Joris Gillis, Jan Swevers, Wilm Decré, Goele Pipeleers:
A Smooth Reformulation of Collision Avoidance Constraints in Trajectory Planning. AMC 2021: 132-137 - [c64]Alejandro Astudillo, Joris Gillis, Goele Pipeleers, Wilm Decré, Jan Swevers:
Speed-Up of Nonlinear Model Predictive Control for Robot Manipulators Using Task and Data Parallelism. AMC 2021: 201-206 - [c63]Mathias Bos, Wilm Decré, Jan Swevers, Goele Pipeleers:
Multi-stage Optimal Control Problem Formulation for Drone Racing Through Gates and Tunnels. AMC 2021: 376-382 - [c62]Laurens Jacobs, Wilm Decré, Jan Swevers, Goele Pipeleers:
Development of a flexible link setup for an advanced linear control theory course. AMC 2021: 383-388 - [c61]Bastiaan Vandewal, Joris Gillis, Goele Pipeleers, Jan Swevers:
Simplified Wheel Slip Modeling and Estimation for Omnidirectional Vehicles. AMC 2021: 389-395 - 2020
- [j25]Massimo De Mauri, Joris Gillis, Jan Swevers, Goele Pipeleers:
A proximal-point outer approximation algorithm. Comput. Optim. Appl. 77(3): 755-777 (2020) - [j24]Deesh Dileep, Ruben Van Parys, Goele Pipeleers, Laurentiu Hetel, Jean-Pierre Richard, Wim Michiels:
Design of robust decentralised controllers for MIMO plants with delays through network structure exploitation. Int. J. Control 93(10): 2275-2289 (2020) - [c60]Bastiaan Vandewal, Joris Gillis, Erwin Rademakers, Goele Pipeleers, Jan Swevers:
Obstacle Avoidance in Path Following using Local Spline Relaxation. AMC 2020: 85-90 - [c59]Massimo De Mauri, Joris Gillis, Goele Pipeleers, Jan Swevers:
Real-Time Model Predictive Control for a Parallel Hybrid Electric Vehicle using Outer Approximation and Semi-Convex Cut Generation**This work has been carried out within the framework of KU Leuven - BOF PFV/10/002 Centre of Excellence: Optimization in Engineering (OPTEC) and DrivetrainCodesign: Flanders Make ICON: Physical and control co-design of electromechanical drivetrains for machines and vehicles. Flanders Make is the Flemish strategic research centre for the manufacturing industry. AMC 2020: 198-203 - [c58]Ajay Suresha Sathya, Joris Gillis, Goele Pipeleers, Jan Swevers:
Real-time Robot Arm Motion Planning and Control with Nonlinear Model Predictive Control using Augmented Lagrangian on a First-Order Solver. ECC 2020: 507-512 - [c57]Massimo De Mauri, Wim Van Roy, Joris Gillis, Jan Swevers, Goele Pipeleers:
Real Time Iterations for Mixed-Integer Model Predictive Control. ECC 2020: 699-705
2010 – 2019
- 2019
- [j23]Niels van Duijkeren, Timm Faulwasser, Goele Pipeleers:
Dual-Objective NMPC: Considering Economic Costs Near Manifolds. IEEE Trans. Autom. Control. 64(9): 3788-3795 (2019) - [j22]Tim Mercy, Nicolas Jacquod, Raoul Herzog, Goele Pipeleers:
Spline-Based Trajectory Generation for CNC Machines. IEEE Trans. Ind. Electron. 66(8): 6098-6107 (2019) - [c56]Taranjitsingh Singh, ZhongZhe Dong, Massimo De Mauri, Wilm Decré, Jan Swevers, Goele Pipeleers:
Combined H∞ linear parameter varying control design and optimal sensor/actuator selection. ECC 2019: 3310-3315 - [c55]Andreas De Preter, Glenn Goysens, Jan Anthonis, Jan Swevers, Goele Pipeleers:
Range Bias Modeling and Autocalibration of an UWB Positioning System. IPIN 2019: 1-8 - 2018
- [j21]Tim Mercy, Ruben Van Parys, Goele Pipeleers:
Spline-Based Motion Planning for Autonomous Guided Vehicles in a Dynamic Environment. IEEE Trans. Control. Syst. Technol. 26(6): 2182-2189 (2018) - [c54]Laurens Jacobs, Maarten Verbandt, Andreas De Preter, Jan Anthonis, Jan Swevers, Goele Pipeleers:
A toolbox for robust control design: An illustrative case study. AMC 2018: 29-34 - [c53]Tim Mercy, Erik Hostens, Goele Pipeleers:
Online motion planning for autonomous vehicles in vast environments. AMC 2018: 114-119 - [c52]Taranjitsingh Singh, Jan Swevers, Goele Pipeleers:
Concurrent H2/H∞feedback control design with optimal sensor and actuator selection. AMC 2018: 223-228 - [c51]Ruben Van Parys, Maarten Verbandt, Marcus Kotzé, Jan Swevers, Herman Bruyninckx, Johan Philips, Goele Pipeleers:
Flexible Multi-Agent System for Distributed Coordination, Transportation & Localisation. AAMAS 2018: 1832-1834 - [c50]Ruben Van Parys, Goele Pipeleers:
Real-time proximal gradient method for linear MPC. ECC 2018: 1142-1147 - [c49]Sampath Kumar Mulagaleti, Ruben Van Parys, Goele Pipeleers:
Distributed model predictive control of multiple vehicles transporting a flexible payload∗. ECC 2018: 1417-1422 - [c48]Ajay Sathya, Pantelis Sopasakis, Ruben Van Parys, Andreas Themelis, Goele Pipeleers, Panagiotis Patrinos:
Embedded nonlinear model predictive control for obstacle avoidance using PANOC. ECC 2018: 1523-1528 - [c47]Gustavo S. Mazzoccante, Gijs Hilhorst, Goele Pipeleers, Ricardo C. L. F. Oliveira:
H∞ Model Order Reduction of Uncertain Linear Systems Using generalized KYP Lemma. ECC 2018: 2616-2622 - [c46]Ruben Van Parys, Maarten Verbandt, Marcus Kotzé, Peter Coppens, Jan Swevers, Herman Bruyninckx, Johan Philips, Goele Pipeleers:
Distributed Coordination, Transportation & Localisation in Industry 4.0. IPIN 2018: 1-8 - 2017
- [j20]Tong Duy Son, Goele Pipeleers, Jan Swevers:
Multi-objective iterative learning control using convex optimization. Eur. J. Control 33: 35-42 (2017) - [j19]Ruben Van Parys, Goele Pipeleers:
Distributed MPC for multi-vehicle systems moving in formation. Robotics Auton. Syst. 97: 144-152 (2017) - [c45]Ruben Van Parys, Goele Pipeleers:
Distributed model predictive formation control with inter-vehicle collision avoidance. ASCC 2017: 2399-2404 - [c44]Niels van Duijkeren, Timm Faulwasser, Goele Pipeleers:
NMPC with economic objectives on target manifolds. CDC 2017: 2519-2524 - [c43]Tong Duy Son, Goele Pipeleers, Jan Swevers, Herman Van der Auweraer:
A generalized frequency domain learning control design with experimental validation. IECON 2017: 4003-4008 - 2016
- [j18]Tong Duy Son, Goele Pipeleers, Jan Swevers:
Robust Monotonic Convergent Iterative Learning Control. IEEE Trans. Autom. Control. 61(4): 1063-1068 (2016) - [j17]Gijs Hilhorst, Goele Pipeleers, Wim Michiels, Ricardo C. L. F. Oliveira, Pedro L. D. Peres, Jan Swevers:
Fixed-Order Linear Parameter-Varying Feedback Control of a Lab-Scale Overhead Crane. IEEE Trans. Control. Syst. Technol. 24(5): 1899-1907 (2016) - [c42]Gijs Hilhorst, Erik Lambrechts, Goele Pipeleers:
Control of linear parameter-varying systems using B-splines. CDC 2016: 3246-3251 - [c41]Wannes Van Loock, Erik Lambrechts, Gijs Hilhorst, Goele Pipeleers:
Approximate parametric cone programming with applications in control. ECC 2016: 178-183 - [c40]Niels van Duijkeren, Robin Verschueren, Goele Pipeleers, Moritz Diehl, Jan Swevers:
Path-following NMPC for serial-link robot manipulators using a path-parametric system reformulation. ECC 2016: 477-482 - [c39]Ruben Van Parys, Goele Pipeleers:
Online distributed motion planning for multi-vehicle systems. ECC 2016: 1580-1585 - [c38]Tim Mercy, Wannes Van Loock, Goele Pipeleers:
Real-time motion planning in the presence of moving obstacles. ECC 2016: 1586-1591 - [c37]Sikandar Moten, Goele Pipeleers, Jan Swevers:
A new gradient based approach for concurrent optimal plant and controller design. ECC 2016: 1604-1609 - [c36]Maarten Verbandt, Jan Swevers, Goele Pipeleers:
An LTI control toolbox - Simplifying optimal feedback controller design. ECC 2016: 2005-2010 - [c35]Tong Duy Son, Armin Steinhauser, Goele Pipeleers, Jan Swevers:
Robust performance iterative learning control : Analysis, synthesis and experimental validation. ECC 2016: 2316-2321 - [c34]Dora Turk, Joris Gillis, Goele Pipeleers, Jan Swevers:
Experimental validation of a combined global and local LPV system identification approach with ℓ2, 1-norm regularization. IECON 2016: 553-558 - [c33]Masato Kanematsu, Gijs Hilhorst, Hiroshi Fujimoto, Goele Pipeleers:
B-spline parametrized solution of robust PID control using the generalized KYP lemma. IECON 2016: 5070-5075 - 2015
- [j16]Gijs Hilhorst, Goele Pipeleers, Wim Michiels, Jan Swevers:
Sufficient LMI conditions for reduced-order multi-objective H2/H∞ control of LTI systems. Eur. J. Control 23: 17-25 (2015) - [j15]Pieter Janssens, Wannes Van Loock, Goele Pipeleers, Jan Swevers:
Efficient Computation of Time-Optimal Point-to-Point Motion Trajectories. IEEE Trans. Control. Syst. Technol. 23(2): 679-686 (2015) - [c32]Gijs Hilhorst, Goele Pipeleers, Wim Michiels, Ricardo C. L. F. Oliveira, Pedro Luis Dias Peres, Jan Swevers:
Reduced-order ℋ2/ℋ∞ control of discrete-time LPV systems with experimental validation on an overhead crane test setup. ACC 2015: 125-130 - [c31]Wannes Van Loock, Goele Pipeleers, Jan Swevers:
Optimal motion planning for differentially flat systems with guaranteed constraint satisfaction. ACC 2015: 4245-4250 - [c30]Frederik Debrouwere, Goele Pipeleers, Jan Swevers:
A sequential log barrier method for solving convex-concave problems with applications in robotics. ACC 2015: 4804-4809 - [c29]Tong Duy Son, Goele Pipeleers, Jan Swevers:
Robust analysis and synthesis with unstructured model uncertainty in lifted system iterative learning control. ACC 2015: 4892-4897 - [c28]Sikandar Moten, Goele Pipeleers, Wim Desmet, Jan Swevers:
A combined use of the adaptive inverse plant modeling and iterative learning control strategy for service load simulations. AuCC 2015: 277-282 - [c27]Gijs Hilhorst, Goele Pipeleers, Wim Michiels, Ricardo C. L. F. Oliveira, Pedro L. D. Peres, Jan Swevers:
An iterative convex approach for fixed-order robust ℋ2/ℋ∞ control of discrete-time linear systems with parametric uncertainty. CDC 2015: 6880-6885 - 2014
- [j14]Goele Pipeleers, Tetsuya Iwasaki, Shinji Hara:
Generalizing the KYP Lemma to Multiple Frequency Intervals. SIAM J. Control. Optim. 52(6): 3618-3638 (2014) - [j13]Goele Pipeleers, Kevin L. Moore:
Unified Analysis of Iterative Learning and Repetitive Controllers in Trial Domain. IEEE Trans. Autom. Control. 59(4): 953-965 (2014) - [j12]Pieter Janssens, Goele Pipeleers, Moritz Diehl, Jan Swevers:
Energy-Optimal Time Allocation of a Series of Point-to-Point Motions. IEEE Trans. Control. Syst. Technol. 22(6): 2432-2435 (2014) - [j11]Keivan Zavari, Goele Pipeleers, Jan Swevers:
Gain-Scheduled Controller Design: Illustration on an Overhead Crane. IEEE Trans. Ind. Electron. 61(7): 3713-3718 (2014) - [j10]Wannes Van Loock, Goele Pipeleers, Moritz Diehl, Joris De Schutter, Jan Swevers:
Optimal Path Following for Differentially Flat Robotic Systems Through a Geometric Problem Formulation. IEEE Trans. Robotics 30(4): 980-985 (2014) - [c26]Frederik Debrouwere, Wannes Van Loock, Goele Pipeleers, Jan Swevers:
Time-optimal tube following for robotic manipulators. AMC 2014: 392-397 - 2013
- [j9]Frederik Debrouwere, Wannes Van Loock, Goele Pipeleers, Moritz Diehl, Jan Swevers, Joris De Schutter:
Convex time-optimal robot path following with Cartesian acceleration and inertial force and torque constraints. J. Syst. Control. Eng. 227(10): 724-732 (2013) - [j8]Pieter Janssens, Goele Pipeleers, Jan Swevers:
A Data-Driven Constrained Norm-Optimal Iterative Learning Control Framework for LTI Systems. IEEE Trans. Control. Syst. Technol. 21(2): 546-551 (2013) - [j7]Frederik Debrouwere, Wannes Van Loock, Goele Pipeleers, Dinh Quoc Tran, Moritz Diehl, Joris De Schutter, Jan Swevers:
Time-Optimal Path Following for Robots With Convex-Concave Constraints Using Sequential Convex Programming. IEEE Trans. Robotics 29(6): 1485-1495 (2013) - [c25]Gijs Hilhorst, Goele Pipeleers, Jan Swevers:
An LMI approach for reduced-order ℋ2 LTI controller synthesis. ACC 2013: 2392-2396 - [c24]Gijs Hilhorst, Goele Pipeleers, Jan Swevers:
Reduced-order multi-objective ℋ∞ control of an overhead crane test setup. CDC 2013: 770-775 - [c23]Pieter Janssens, Wannes Van Loock, Goele Pipeleers, Frederik Debrouwere, Jan Swevers:
Iterative learning control for optimal path following problems. CDC 2013: 6670-6675 - [c22]Tong Duy Son, Goele Pipeleers, Jan Swevers:
Robust optimal iterative learning control with model uncertainty. CDC 2013: 7522-7527 - [c21]Tong Duy Son, Goele Pipeleers, Jan Swevers:
Optimal iterative learning control design with trial-varying initial conditions. ECC 2013: 1181-1186 - [c20]Wannes Van Loock, Goele Pipeleers, Jan Swevers:
Time-optimal quadrotor flight. ECC 2013: 1788-1792 - [c19]Goele Pipeleers, Tetsuya Iwasaki, Shinji Hara:
Generalizing the KYP lemma to the union of intervals. ECC 2013: 3913-3918 - [c18]Frederik Debrouwere, Wannes Van Loock, Goele Pipeleers, Dinh Quoc Tran, Moritz Diehl, Joris De Schutter, Jan Swevers:
Optimal robot path following for minimal time versus energy loss trade-off using sequential convex programming. ICM 2013: 316-320 - [c17]Pieter Janssens, Wannes Van Loock, Goele Pipeleers, Jan Swevers:
An efficient algorithm for solving time-optimal point-to-point motion control problems. ICM 2013: 682-687 - [c16]Wannes Van Loock, Steven Bellens, Goele Pipeleers, Joris De Schutter, Jan Swevers:
Time-optimal parking and flying: Solving path following problems efficiently. ICM 2013: 841-846 - [c15]Frederik Debrouwere, Wannes Van Loock, Goele Pipeleers, Dinh Quoc Tran, Moritz Diehl, Joris De Schutter, Jan Swevers:
Time-optimal path following for robots with trajectory jerk constraints using sequential convex programming. ICRA 2013: 1916-1921 - [c14]Frederik Debrouwere, Wannes Van Loock, Goele Pipeleers, Moritz Diehl, Joris De Schutter, Jan Swevers:
Time-optimal path following for robots with object collision avoidance using lagrangian duality. RoMoCo 2013: 186-191 - [c13]Wannes Van Loock, Goele Pipeleers, Jan Swevers:
Time-optimal path planning for flat systems with application to a wheeled mobile robot. RoMoCo 2013: 192-196 - 2012
- [j6]Goele Pipeleers, Kevin L. Moore:
Reduced-Order Iterative Learning Control and a Design Strategy for Optimal Performance Tradeoffs. IEEE Trans. Autom. Control. 57(9): 2390-2395 (2012) - [c12]Keivan Zavari, Goele Pipeleers, Jan Swevers:
Multi-ℌ∞ controller design and illustration on an overhead crane. CCA 2012: 670-674 - [c11]Keivan Zavari, Goele Pipeleers, Jan Swevers:
Interpolated gain-scheduled controllers for an over-head crane. AMC 2012: 1-6 - [c10]Pieter Janssens, Goele Pipeleers, Jan Swevers:
Initialization of ILC based on a previously learned trajectory. ACC 2012: 610-614 - 2011
- [j5]Goele Pipeleers, Lieven Vandenberghe:
Generalized KYP Lemma With Real Data. IEEE Trans. Autom. Control. 56(12): 2942-2946 (2011) - [c9]Wannes Van Loock, Goele Pipeleers, Jan Swevers:
Optimal input design for flat systems using B-splines. ACC 2011: 3281-3282 - [c8]Goele Pipeleers, Kevin L. Moore:
Reduced-order ILC: The Internal Model Principle reconsidered. ACC 2011: 3639-3644 - [c7]Keivan Zavari, Hamid Khatibi, Vahid Johari Majd, Goele Pipeleers, Jan Swevers:
Fixed-order robust controller design with time-domain constraints. ACC 2011: 3698-3703 - [c6]Pieter Janssens, Goele Pipeleers, Jan Swevers:
Model-free iterative learning control for LTI systems and experimental validation on a linear motor test setup. ACC 2011: 4287-4292 - [c5]Pieter Janssens, Goele Pipeleers, Jan Swevers:
Model-free iterative learning of time-optimal point-to-point motions for LTI systems. CDC/ECC 2011: 6031-6036 - 2010
- [j4]Goele Pipeleers, Jan Swevers:
Optimal feedforward controller design for periodic inputs. Int. J. Control 83(5): 1044-1053 (2010) - [c4]Jan Swevers, Goele Pipeleers, Moritz Diehl, Joris De Schutter:
Pushing motion control systems to their limits using convex optimization techniques. AMC 2010: 807-814
2000 – 2009
- 2009
- [j3]Goele Pipeleers, Bram Demeulenaere, Jan Swevers, Lieven Vandenberghe:
Extended LMI characterizations for stability and performance of linear systems. Syst. Control. Lett. 58(7): 510-518 (2009) - [j2]Goele Pipeleers, Bram Demeulenaere, Farid Al-Bender, Joris De Schutter, Jan Swevers:
Optimal Performance Tradeoffs in Repetitive Control: Experimental Validation on an Active Air Bearing Setup. IEEE Trans. Control. Syst. Technol. 17(4): 970-979 (2009) - [c3]Goele Pipeleers, Bram Demeulenaere, Farid Al-Bender, Joris De Schutter, Jan Swevers:
Optimal performance trade-offs in repetitive control: Experimental validation on an active air bearing setup. ACC 2009: 1616-1621 - 2008
- [j1]Goele Pipeleers, Bram Demeulenaere, Joris De Schutter, Jan Swevers:
Robust high-order repetitive control: Optimal performance trade-offs. Autom. 44(10): 2628-2634 (2008) - [c2]Goele Pipeleers, Bram Demeulenaere, Joris De Schutter, Jan Swevers:
Robust high-order repetitive control. ACC 2008: 1080-1085 - 2007
- [c1]Goele Pipeleers, Bram Demeulenaere, Joris De Schutter, Jan Swevers:
Design of Robust Optimal Feedforward Controllers for Periodic Disturbances. ACC 2007: 5333-5340
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:05 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint