2000 results sorted by ID
Possible spell-corrected query: has functions
On the Black-Box Complexity of Private-Key Inner-Product Functional Encryption
Mohammad Hajiabadi, Roman Langrehr, Adam O'Neill, Mingyuan Wang
Foundations
We initiate the study of the black-box complexity of private-key functional encryption (FE). Of central importance in the private-key setting is the inner-product functionality, which is currently only known from assumptions that imply public-key encryption, such as Decisional Diffie-Hellman or Learning-with-Errors. As our main result, we rule out black-box constructions of private-key inner-product FE from random oracles. This implies a black-box separation between private-key...
Black-box Collision Attacks on the NeuralHash Perceptual Hash Function
Diane Leblanc-Albarel, Bart Preneel
Attacks and cryptanalysis
Perceptual hash functions map multimedia content that is perceptually close to outputs strings that are identical or similar. They are widely used for the identification of protected copyright and illegal content in information sharing services: a list of undesirable files is hashed with a perceptual hash function and compared, server side, to the hash of the content that is uploaded. Unlike cryptographic hash functions, the design details of perceptual hash functions are typically kept...
Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD: More Applications of Pseudo-Random Injections
Mustafa Khairallah
Secret-key cryptography
Pseudo-Random Injections (PRIs) have had several applications in symmetric-key cryptography, such as in the idealization of Authenticated Encryption with Associated Data (AEAD) schemes, building robust AEAD, and, recently, in converting a committing AEAD scheme into a succinctly committing AEAD scheme. In Crypto 2024, Bellare and Hoang showed that if an AEAD scheme is already committing, it can be transformed into a succinctly committed scheme by encrypting part of the plaintext using a PRI....
ColliderScript: Covenants in Bitcoin via 160-bit hash collisions
Ethan Heilman, Victor I. Kolobov, Avihu M. Levy, Andrew Poelstra
Cryptographic protocols
We introduce a method for enforcing covenants on Bitcoin outputs without requiring any changes to Bitcoin by designing a hash collision based equivalence check which bridges Bitcoin's limited Big Script to Bitcoin's Small Script. This allows us evaluate the signature of the spending transaction (available only to Big Script) in Small Script. As Small Script enables arbitrary computations, we can introspect into the spending transaction and enforce covenants on it.
Our approach leverages...
An Efficient and Secure Boolean Function Evaluation Protocol
Sushmita Sarkar, Vikas Srivastava, Tapaswini Mohanty, Nibedita Kundu, Sumit Kumar Debnath
Cryptographic protocols
Boolean functions play an important role in designing and analyzing many cryptographic systems, such as block ciphers, stream ciphers, and hash functions, due to their unique cryptographic properties such as nonlinearity, correlation immunity, and algebraic properties. The secure evaluation of Boolean functions or Secure Boolean Evaluation (SBE) is an important area of research. SBE allows parties to jointly compute Boolean functions without exposing their private inputs. SBE finds...
Black-Box Timed Commitments from Time-Lock Puzzles
Hamza Abusalah, Gennaro Avitabile
Cryptographic protocols
A Timed Commitment (TC) with time parameter $t$ is hiding for time at most $t$, that is, commitments can be force-opened by any third party within time $t$. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck.
In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by...
An efficient collision attack on Castryck-Decru-Smith’s hash function
Ryo Ohashi, Hiroshi Onuki
Attacks and cryptanalysis
In 2020, Castryck-Decru-Smith constructed a hash function, using the (2,2)-isogeny graph of superspecial principally polarized abelian surfaces. In their construction, the initial surface was chosen from vertices very "close" to the square of a supersingular elliptic curve with a known endomorphism ring.
In this paper, we introduce an algorithm for detecting a collision on their hash function. Under some heuristic assumptions, the time complexity and space complexity of our algorithm are...
Resilience-Optimal Lightweight High-threshold Asynchronous Verifiable Secret Sharing
Hao Cheng, Jiliang Li, Yizhong Liu, Yuan Lu, Weizhi Meng, Zhenfeng Zhang
Cryptographic protocols
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
Revisiting the “improving the security of multi-party quantum key agreement with five- qubit Brown states”
Yu-Yuan Chou, Hsien-Hung Liu, Jue-Sam Chou
Cryptographic protocols
In 2018 Cai et al. proposed a multi-party quantum key agreement with five-qubit Brown states. They confirmed the security of their proposed scheme. However, Elhadad, Ahmed, et al. found the scheme cannot resist the collusion attack launched by legal participants. They suggested a modification and declared that their improved version is capable of resisting this type of attack. Nevertheless, after analysis, we found that the collusion attack still exists. Subsequently, we proposed a...
Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3
Sabrina Kunzweiler, Luciano Maino, Tomoki Moriya, Christophe Petit, Giacomo Pope, Damien Robert, Miha Stopar, Yan Bo Ti
Implementation
We provide explicit descriptions for radical 2-isogenies in dimensions
one, two and three using theta coordinates. These formulas allow us to efficiently
navigate in the corresponding isogeny graphs.
As an application of this, we implement different versions of the CGL hash func-
tion. Notably, the three-dimensional version is fastest, which demonstrates yet
another potential of using higher dimensional isogeny graphs in cryptography.
(Quantum) Indifferentiability and Pre-Computation
Joseph Carolan, Alexander Poremba, Mark Zhandry
Foundations
Indifferentiability is a popular cryptographic paradigm for analyzing the security of ideal objects---both in a classical as well as in a quantum world. It is typically stated in the form of a composable and simulation-based definition, and captures what it means for a construction (e.g., a cryptographic hash function) to be ``as good as'' an ideal object (e.g., a random oracle). Despite its strength, indifferentiability is not known to offer security against pre-processin} attacks in which...
Pseudorandom Multi-Input Functional Encryption and Applications
Shweta Agrawal, Simran Kumari, Shota Yamada
Public-key cryptography
We construct the first multi-input functional encryption (MIFE) and indistinguishability obfuscation (iO) schemes for pseudorandom functionalities, where the output of the functionality is pseudorandom for every input seen by the adversary. Our MIFE scheme relies on LWE and evasive LWE (Wee, Eurocrypt 2022 and Tsabary, Crypto 2022) for constant arity functions, and a strengthening of evasive LWE for polynomial arity. Thus, we obtain the first MIFE and iO schemes for a nontrivial...
Practical Asynchronous MPC from Lightweight Cryptography
Atsuki Momose
Cryptographic protocols
We present an asynchronous secure multi-party computation (MPC) protocol that is practically efficient. Our protocol can evaluate any arithmetic circuit with linear communication in the number of parties per multiplication gate, while relying solely on computationally lightweight cryptography such as hash function and symmetric encryption. Our protocol is optimally resilient and tolerates $t$ malicious parties among $n = 3t+1$ parties.
At the technical level, we manage to apply the...
Universally Composable Non-Interactive Zero-Knowledge from Sigma Protocols via a New Straight-line Compiler
Megan Chen, Pousali Dey, Chaya Ganesh, Pratyay Mukherjee, Pratik Sarkar, Swagata Sasmal
Cryptographic protocols
Non-interactive zero-knowledge proofs (NIZK) are essential building blocks in threshold cryptosystems like multiparty signatures, distributed key generation, and verifiable secret sharing, allowing parties to prove correct behavior without revealing secrets. Furthermore, universally composable (UC) NIZKs enable seamless composition in the larger cryptosystems. A popular way to construct NIZKs is to compile interactive protocols using the Fiat-Shamir transform. Unfortunately, Fiat-Shamir...
$\widetilde{\mbox{O}}$ptimal Adaptively Secure Hash-based Asynchronous Common Subset
Hanwen Feng, Zhenliang Lu, Qiang Tang
Cryptographic protocols
Asynchronous multiparty computation (AMPC) requires an input agreement phase where all participants have a consistent view of the set of private inputs. While the input agreement problem can be precisely addressed by a Byzantine fault-tolerant consensus known as Asynchronous Common Subset (ACS), existing ACS constructions with potential post-quantum security have a large $\widetilde{\mathcal{O}}(n^3)$ communication complexity for a network of $n$ nodes. This poses a bottleneck for AMPC in...
From One-Time to Two-Round Reusable Multi-Signatures without Nested Forking
Lior Rotem, Gil Segev, Eylon Yogev
Foundations
Multi-signature schemes are gaining significant interest due to their blockchain applications. Of particular interest are two-round schemes in the plain public-key model that offer key aggregation, and whose security is based on the hardness of the DLOG problem. Unfortunately, despite substantial recent progress, the security proofs of the proposed schemes provide rather insufficient concrete guarantees (especially for 256-bit groups). This frustrating situation has so far been approached...
Toward Optimal-Complexity Hash-Based Asynchronous MVBA with Optimal Resilience
Jovan Komatovic, Joachim Neu, Tim Roughgarden
Applications
Multi-valued validated Byzantine agreement (MVBA), a fundamental primitive of distributed computing, enables $n$ processes to agree on a valid $\ell$-bit value, despite $t$ faulty processes behaving arbitrarily. Among hash-based protocols for the asynchronous setting with adaptive faults, the state-of-the-art HMVBA protocol
has optimal $O(1)$ time complexity and near-optimal $O(n \ell + n^2 \kappa \log n)$ bit complexity, but tolerates only $t < n/5$ faults. We present REDUCER, an MVBA...
Overlapped Bootstrapping for FHEW/TFHE and Its Application to SHA3
Deokhwa Hong, Youngjin Choi, Yongwoo Lee, Young-Sik Kim
Implementation
Homomorphic Encryption (HE) enables operations on encrypted data without requiring decryption, thus allowing for secure handling of confidential data within smart contracts. Among the known HE schemes, FHEW and TFHE are particularly notable for use in smart contracts due to their lightweight nature and support for arbitrary logical gates. In contrast, other HE schemes often require several gigabytes of keys and are limited to supporting only addition and multiplication. As a result, there...
A Hidden-Bits Approach to Black-Box Statistical ZAPs from LWE
Eli Bradley, George Lu, Shafik Nassar, Brent Waters, David J. Wu
Foundations
We give a new approach for constructing statistical ZAP arguments (a two-message public-coin statistically witness indistinguishable argument) from quasi-polynomial hardness of the learning with errors (LWE) assumption with a polynomial modulus-to-noise ratio. Previously, all ZAP arguments from lattice-based assumptions relied on correlation-intractable hash functions. In this work, we present the first construction of a ZAP from LWE via the classic hidden-bits paradigm. Our construction...
Instance Compression, Revisited
Gal Arnon, Shany Ben-David, Eylon Yogev
Foundations
Collision-resistant hashing (CRH) is a cornerstone of cryptographic protocols. However, despite decades of research, no construction of a CRH based solely on one-way functions has been found. Moreover, there are black-box limitations that separate these two primitives.
Harnik and Naor [HN10] overcame this black-box barrier by introducing the notion of instance compression. Instance compression reduces large NP instances to a size that depends on their witness size while preserving the...
A Tight Lower Bound on the TdScrypt Trapdoor Memory-Hard Function
Jeremiah Blocki, Seunghoon Lee
Public-key cryptography
A trapdoor Memory-Hard Function is a function that is memory-hard to evaluate for any party who does not have a trapdoor, but is substantially less expensive to evaluate with the trapdoor. Biryukov and Perin (ASIACRYPT 2017) introduced the first candidate trapdoor Memory-Hard Function called Diodon which modifies a Memory-Hard Function called Scrypt by replacing a hash chain with repeated squaring modulo a composite number $N=pq$. The trapdoor, which consists of the prime factors $p$ and...
Maximizing the Utility of Cryptographic Setups: Secure PAKEs, with either functional RO or CRS
Yuting Xiao, Rui Zhang, Hong-Sheng Zhou
Cryptographic protocols
For Password-Based Authenticated Key Exchange (PAKE), an idealized setup such as random oracle (RO) or a trusted setup such as common reference string (CRS) is a must in the universal composability (UC) framework (Canetti, FOCS 2001). Given the potential failure of a CRS or RO setup, it is natural to consider distributing trust among the two setups, resulting a CRS-or-RO-setup (i.e., CoR-setup).
However, the infeasibility highlighted by Katz et al. (PODC 2014) suggested that it is...
RPO-M31 and XHash-M31: Efficient Hash Functions for Circle STARKs
Tomer Ashur, Sundas Tariq
Secret-key cryptography
We present two new arithmetization oriented hash functions based on RPO [Ashur, kindi, Meier, Szepieniec, Threadbare; ePrint 2022/1577] and XHash-12 [Ashur, Bhati, Kindi, Mahzoun, Perrin; ePrint 2023/1045] adapted for $p=2^{31}-1$ and ready to use in Circle STARKs [Habock, Levit, Papini; ePrint 2024/278].
Efficient Boolean-to-Arithmetic Mask Conversion in Hardware
Aein Rezaei Shahmirzadi, Michael Hutter
Implementation
Masking schemes are key in thwarting side-channel attacks due to their robust theoretical foundation. Transitioning from Boolean to arithmetic (B2A) masking is a necessary step in various cryptography schemes, including hash functions, ARX-based ciphers, and lattice-based cryptography. While there exists a significant body of research focusing on B2A software implementations, studies pertaining to hardware implementations are quite limited, with the majority dedicated solely to creating...
Block Ciphers in Idealized Models: Automated Proofs and New Security Results
Miguel Ambrona, Pooya Farshim, Patrick Harasser
Implementation
We develop and implement AlgoROM, a tool to systematically analyze the security of a wide class of symmetric primitives in idealized models of computation. The schemes that we consider are those that can be expressed over an alphabet consisting of XOR and function symbols for hash functions, permutations, or block ciphers.
We implement our framework in OCaml and apply it to a number of prominent constructions, which include the Luby–Rackoff (LR), key-alternating Feistel (KAF), and...
Breaking, Repairing and Enhancing XCBv2 into the Tweakable Enciphering Mode GEM
Amit Singh Bhati, Michiel Verbauwhede, Elena Andreeva
Secret-key cryptography
Tweakable enciphering modes (TEMs) provide security in a variety of storage and space-critical applications like disk and file-based encryption, and packet-based communication protocols, among others. XCB-AES (known as XCBv2) is specified in the IEEE 1619.2 standard for encryption of sector-oriented storage media and it comes with a proof of security for block-aligned input messages.
In this work, we demonstrate the $\textit{first}$ and most efficient plaintext recovery attack on...
STARK-based Signatures from the RPO Permutation
Shahla Atapoor, Cyprien Delpech de Saint Guilhem, Al Kindi
Public-key cryptography
This work describes a digital signature scheme constructed from a zero-knowledge proof of knowledge of a pre-image of the Rescue Prime Optimized (RPO) permutation. The proof of knowledge is constructed with the DEEP-ALI interactive oracle proof combined with the Ben-Sasson--Chiesa--Spooner (BCS) transformation in the random oracle model. The EUF-CMA security of the resulting signature scheme is established from the UC-friendly security properties of the BCS transformation and the pre-image...
Relaxed Lattice-Based Programmable Hash Functions: New Efficient Adaptively Secure IBEs
Xingye Lu, Jingjing Fan, Man Ho AU
Public-key cryptography
In this paper, we introduce the notion of relaxed lattice-based programmable hash function (RPHF), which is a novel variant of lattice-based programmable hash functions (PHFs). Lattice-based PHFs, together with preimage trapdoor functions (TDFs), have been widely utilized (implicitly or explicitly) in the construction of adaptively secure identity-based encryption (IBE) schemes. The preimage length and the output length of the underlying PHF and TDF together determine the user secret key and...
How to Recover the Full Plaintext of XCB
Peng Wang, Shuping Mao, Ruozhou Xu, Jiwu Jing, Yuewu Wang
Attacks and cryptanalysis
XCB, a tweakable enciphering mode, is part of IEEE Std. 1619.2 for shared storage media. We show that all versions of XCB are not secure through three plaintext recovery attacks. A key observation is that XCB behaves like an LRW1-type tweakable block cipher for single-block messages, which lacks CCA security. The first attack targets one-block XCB, using three queries to recover the plaintext. The second one requires four queries to recover the plaintext that excludes one block. The last one...
Beware of Keccak: Practical Fault Attacks on SHA-3 to Compromise Kyber and Dilithium on ARM Cortex-M Devices
Yuxuan Wang, Jintong Yu, Shipei Qu, Xiaolin Zhang, Xiaowei Li, Chi Zhang, Dawu Gu
Attacks and cryptanalysis
Keccak acts as the hash algorithm and eXtendable-Output Function (XOF) specified in the NIST standard drafts for Kyber and Dilithium. The Keccak output is highly correlated with sensitive information. While in RSA and ECDSA, hash-like components are only used to process public information, such as the message. The importance and sensitivity of hash-like components like Keccak are much higher in Kyber and Dilithium than in traditional public-key cryptography. However, few works study Keccak...
Concretely Efficient Private Set Union via Circuit-based PSI
Gowri R Chandran, Thomas Schneider, Maximilian Stillger, Christian Weinert
Cryptographic protocols
Private set intersection (PSI) is a type of private set operation (PSO) for which concretely efficient linear-complexity protocols do exist.
However, the situation is currently less satisfactory for other relevant PSO problems such as private set union (PSU):
For PSU, the most promising protocols either rely entirely on computationally expensive public-key operations or suffer from substantial communication overhead.
In this work, we present the first PSU protocol that is mainly based...
The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing
Katharina Boudgoust, Mark Simkin
Foundations
Proofs of partial knowledge, first considered by Cramer, Damgård and Schoenmakers (CRYPTO'94) and De Santis et al. (FOCS'94), allow for proving the validity of $k$ out of $n$ different statements without revealing which ones those are. In this work, we present a new approach for transforming certain proofs system into new ones that allows for proving partial knowledge. The communication complexity of the resulting proof system only depends logarithmically on the total number of statements...
Mystrium: Wide Block Encryption Efficient on Entry-Level Processors
Parisa Amiri Eliasi, Koustabh Ghosh, Joan Daemen
Secret-key cryptography
We present a tweakable wide block cipher called Mystrium and show it as the fastest such primitive on low-end processors that lack dedicated AES or other cryptographic instructions, such as ARM Cortex-A7.
Mystrium is based on the provably secure double-decker mode, that requires a doubly extendable cryptographic keyed (deck) function and a universal hash function.
We build a new deck function called Xymmer that for its compression part uses Multimixer-128, the fastest universal hash for...
Detecting and Correcting Computationally Bounded Errors: A Simple Construction Under Minimal Assumptions
Jad Silbak, Daniel Wichs
Foundations
We study error detection and error correction in a computationally bounded world, where errors are introduced by an arbitrary polynomial time adversarial channel. We consider codes where the encoding procedure uses random coins and define two distinct variants: (1) in randomized codes, fresh randomness is chosen during each encoding operation and is unknown a priori, while (2) in self-seeded codes, the randomness of the encoding procedure is fixed once upfront and is known to the adversary....
Threshold PAKE with Security against Compromise of all Servers
Yanqi Gu, Stanislaw Jarecki, Pawel Kedzior, Phillip Nazarian, Jiayu Xu
Cryptographic protocols
We revisit the notion of threshold Password-Authenticated Key Exchange (tPAKE), and we extend it to augmented tPAKE (atPAKE), which protects password information even in the case all servers are compromised, except for allowing an (inevitable) offline dictionary attack. Compared to prior notions of tPAKE this is analogous to replacing symmetric PAKE, where the server stores the user's password, with an augmented (or asymmetric) PAKE, like OPAQUE [JKX18], where the server stores a password...
$\Pi$-signHD: A New Structure for the SQIsign Family with Flexible Applicability
Kaizhan Lin, Weize Wang, Chang-An Zhao, Yunlei Zhao
Implementation
Digital signature is a fundamental cryptographic primitive and is widely used in the real world. Unfortunately, the current digital signature standards like EC-DSA and RSA are not quantum-resistant. Among post-quantum cryptography (PQC), isogeny-based signatures preserve some advantages of elliptic curve cryptosystems, particularly offering small signature sizes. Currently, SQIsign and its variants are the most promising isogeny-based digital signature schemes.
In this paper, we propose a...
Cache Timing Leakages in Zero-Knowledge Protocols
Shibam Mukherjee, Christian Rechberger, Markus Schofnegger
Attacks and cryptanalysis
The area of modern zero-knowledge proof systems has seen a significant rise in popularity over the last couple of years, with new techniques and optimized constructions emerging on a regular basis.
As the field matures, the aspect of implementation attacks becomes more relevant, however side-channel attacks on zero-knowledge proof systems have seen surprisingly little treatment so far. In this paper we give an overview of potential attack vectors and show that some of the underlying...
Universal Context Commitment without Ciphertext Expansion
Arghya Bhattacharjee, Ritam Bhaumik, Chandranan Dhar
Secret-key cryptography
An ongoing research challenge in symmetric cryptography is to design an authenticated encryption (AE) with a commitment to the secret key or preferably to the entire context. One way to achieve this is to use a transform on an existing AE scheme, if possible with no output length expansion. At EUROCRYPT'22, Bellare and Hoang proposed the HtE transform, which lifts key-commitment to context-commitment. In the same year at ESORICS'22, Chan and Rogaway proposed the CTX transform, which works on...
Generalized Triangular Dynamical System: An Algebraic System for Constructing Cryptographic Permutations over Finite Fields
Arnab Roy, Matthias Johann Steiner
Secret-key cryptography
In recent years a new class of symmetric-key primitives over $\mathbb{F}_p$ that are essential to Multi-Party Computation and Zero-Knowledge Proofs based protocols has emerged. Towards improving the efficiency of such primitives, a number of new block ciphers and hash functions over $\mathbb{F}_p$ were proposed. These new primitives also showed that following alternative design strategies to the classical Substitution-Permutation Network (SPN) and Feistel Networks leads to more efficient...
Probabilistic Data Structures in the Wild: A Security Analysis of Redis
Mia Filić, Jonas Hofmann, Sam A. Markelon, Kenneth G. Paterson, Anupama Unnikrishnan
Attacks and cryptanalysis
Redis (Remote Dictionary Server) is a general purpose, in-memory database that supports a rich array of functionality, including various Probabilistic Data Structures (PDS), such as Bloom filters, Cuckoo filters, as well as cardinality and frequency estimators.
These PDS typically perform well in the average case. However, given that Redis is intended to be used across a diverse array of applications, it is crucial to evaluate how these PDS perform under worst-case scenarios, i.e., when...
AES-based CCR Hash with High Security and Its Application to Zero-Knowledge Proofs
Hongrui Cui, Chun Guo, Xiao Wang, Chenkai Weng, Kang Yang, Yu Yu
Cryptographic protocols
The recent VOLE-based interactive zero-knowledge (VOLE-ZK) protocols along with non-interactive zero-knowledge (NIZK) proofs based on MPC-in-the-Head (MPCitH) and VOLE-in-the-Head (VOLEitH) extensively utilize the commitment schemes, which adopt a circular correlation robust (CCR) hash function as the core primitive. Nevertheless, the state-of-the-art CCR hash construction by Guo et al. (S&P'20), building from random permutations, can only provide 128-bit security, when it is instantiated...
Non-Interactive Zero-Knowledge from LPN and MQ
Quang Dao, Aayush Jain, Zhengzhong Jin
Cryptographic protocols
We give the first construction of non-interactive zero-knowledge (NIZK) arguments from post-quantum assumptions other than Learning with Errors. In particular, we achieve NIZK under the polynomial hardness of the Learning Parity with Noise (LPN) assumption, and the exponential hardness of solving random under-determined multivariate quadratic equations (MQ). We also construct NIZK satisfying statistical zero-knowledge assuming a new variant of LPN, Dense-Sparse LPN, introduced by Dao and...
A short-list of pairing-friendly curves resistant to the Special TNFS algorithm at the 192-bit security level
Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic
Implementation
For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...
On the Number of Restricted Solutions to Constrained Systems and their Applications
Benoît Cogliati, Jordan Ethan, Ashwin Jha, Mridul Nandi, Abishanka Saha
Secret-key cryptography
In this paper, we formulate a special class of systems of linear equations over finite fields that appears naturally in the provable security analysis of several MAC and PRF modes of operation. We derive lower bounds on the number of solutions for such systems adhering to some predefined restrictions, and apply these lower bounds to derive tight PRF security for several constructions. We show security up to $2^{3n/4}$ queries for the single-keyed variant of the Double-block Hash-then-Sum...
Shift-invariant functions and almost liftings
Jan Kristian Haugland, Tron Omland
Foundations
We investigate shift-invariant vectorial Boolean functions on $n$ bits that are lifted from Boolean functions on $k$ bits, for $k\leq n$. We consider vectorial functions that are not necessarily permutations, but are, in some sense, almost bijective. In this context, we define an almost lifting as a Boolean function for which there is an upper bound on the number of collisions of its lifted functions that does not depend on $n$. We show that if a Boolean function with diameter $k$ is an...
Probabilistic Linearization: Internal Differential Collisions in up to 6 Rounds of SHA-3
Zhongyi Zhang, Chengan Hou, Meicheng Liu
Attacks and cryptanalysis
The SHA-3 standard consists of four cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384 and SHA3-512, and two extendable-output functions (XOFs), called SHAKE128 and SHAKE256. In this paper, we study the collision resistance of the SHA-3 instances. By analyzing the nonlinear layer, we introduce the concept of maximum difference density subspace, and develop a new target internal difference algorithm by probabilistic linearization. We also exploit new strategies for optimizing...
Lower Bound on Number of Compression Calls of a Collision-Resistance Preserving Hash
Debasmita Chakraborty, Mridul Nandi
Secret-key cryptography
The collision-resistant hash function is an early cryptographic primitive
that finds extensive use in various applications. Remarkably, the Merkle-Damgård
and Merkle tree hash structures possess the collision-resistance preserving property,
meaning the hash function remains collision-resistant when the underlying compression function is collision-resistant. This raises the intriguing question of whether reducing the number of underlying compression function calls with the...
MatcHEd: Privacy-Preserving Set Similarity based on MinHash
Rostin Shokri, Charles Gouert, Nektarios Georgios Tsoutsos
Applications
Fully homomorphic encryption (FHE) enables arbitrary computation on encrypted data, but certain applications remain prohibitively expensive in the encrypted domain. As a case in point, comparing two encrypted sets of data is extremely computationally expensive due to the large number of comparison operators required. In this work, we propose a novel methodology for encrypted set similarity inspired by the MinHash algorithm and the CGGI FHE scheme. Doing comparisons in FHE requires...
Quantum Implementation of LSH
Yujin Oh, Kyungbae Jang, Hwajeong Seo
Implementation
As quantum computing progresses, the assessment of cryptographic algorithm resilience against quantum attack gains significance interests in the field of cryptanalysis. Consequently, this paper implements the depth-optimized quantum circuit of Korean hash function (i.e., LSH) and estimates its quantum attack cost in quantum circuits. By utilizing an optimized quantum adder and employing parallelization techniques, the proposed quantum circuit achieves a 78.8\% improvement in full depth and a...
Separating Selective Opening Security From Standard Security, Assuming IO
Justin Holmgren, Brent Waters
Foundations
Assuming the hardness of LWE and the existence of IO, we construct a public-key encryption scheme that is IND-CCA secure but fails to satisfy even a weak notion of indistinguishability security with respect to selective opening attacks. Prior to our work, such a separation was known only from stronger assumptions such as differing inputs obfuscation (Hofheinz, Rao, and Wichs, PKC 2016).
Central to our separation is a new hash family, which may be of independent interest. Specifically,...
Trust Nobody: Privacy-Preserving Proofs for Edited Photos with Your Laptop
Pierpaolo Della Monica, Ivan Visconti, Andrea Vitaletti, Marco Zecchini
Applications
The Internet has plenty of images that are transformations (e.g., resize, blur) of confidential original images. Several scenarios (e.g., selling images over the Internet, fighting disinformation, detecting deep fakes) would highly benefit from systems allowing to verify that an image is the result of a transformation applied to a confidential authentic image. In this paper, we focus on systems for proving and verifying the correctness of transformations of authentic images guaranteeing: 1)...
Efficient Lattice-Based Threshold Signatures with Functional Interchangeability
Guofeng Tang, Bo Pang, Long Chen, Zhenfeng Zhang
Public-key cryptography
A threshold signature scheme distributes the ability to generate signatures through distributed key generation and signing protocols. A threshold signature scheme should be functionally interchangeable, meaning that a signature produced by a threshold scheme should be verifiable by the same algorithm used for non-threshold signatures. To resist future attacks from quantum adversaries, lattice-based threshold signatures are desirable. However, the performance of existing lattice-based...
Side-Channel and Fault Resistant ASCON Implementation: A Detailed Hardware Evaluation (Extended Version)
Aneesh Kandi, Anubhab Baksi, Peizhou Gan, Sylvain Guilley, Tomáš Gerlich, Jakub Breier, Anupam Chattopadhyay, Ritu Ranjan Shrivastwa, Zdeněk Martinásek, Shivam Bhasin
Implementation
In this work, we present various hardware implementations for the lightweight cipher ASCON, which was recently selected as the winner of the NIST organized Lightweight Cryptography (LWC) competition. We cover encryption + tag generation and decryption + tag verification for the ASCON AEAD and also the ASCON hash function. On top of the usual (unprotected) implementation, we present side-channel protection (threshold countermeasure) and triplication/majority-based fault protection. To the...
Analysis, modify and apply in IIOT form light-weight PSI in CM20
Zhuang Shan, Leyou Zhang, Qing Wu, Qiqi Lai
Cryptographic protocols
Multi-party computation (\textsf{MPC}) is a major research interest in modern cryptography, and Privacy Set Intersection (\textsf{PSI}) is an important research topic within \textsf{MPC}. Its main function is to allow two parties to compute the intersection of their private sets without revealing any other information. Therefore, \textsf{PSI} can be applied to various real-world scenarios, such as the Industrial Internet of Things (\textsf{IIOT}). Chase and Miao presented a paper on...
Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things
Shiyuan Xu, Xue Chen, Yu Guo, Siu-Ming Yiu, Shang Gao, Bin Xiao
Public-key cryptography
Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage...
MATHEMATICAL SPECULATIONS ON CRYPTOGRAPHY
Anjali C B
Foundations
The current cryptographic frameworks like RSA, ECC, and AES are potentially under quantum threat. Quantum cryptographic and post-quantum cryptography are being extensively researched for securing future information. The quantum computer and quantum algorithms are still in the early developmental stage and thus lack scalability for practical application. As a result of these challenges, most researched PQC methods are lattice-based, code-based, ECC isogeny, hash-based, and multivariate...
Generalized Indifferentiable Sponge and its Application to Polygon Miden VM
Tomer Ashur, Amit Singh Bhati
Secret-key cryptography
Cryptographic hash functions are said to be the work-horses of modern cryptography. One of the strongest approaches to assess a cryptographic hash function's security is indifferentiability. Informally, indifferentiability measures to what degree the function resembles a random oracle when instantiated with an ideal underlying primitive. However, proving the indifferentiability security of hash functions has been challenging due to complex simulator designs and proof arguments. The Sponge...
A Tight Security Proof for $\mathrm{SPHINCS^{+}}$, Formally Verified
Manuel Barbosa, François Dupressoir, Andreas Hülsing, Matthias Meijers, Pierre-Yves Strub
Public-key cryptography
$\mathrm{SPHINCS^{+}}$ is a post-quantum signature scheme that, at the time of writing, is being standardized as $\mathrm{SLH\text{-}DSA}$. It is the most conservative option for post-quantum signatures, but the original tight proofs of security were flawed—as reported by Kudinov, Kiktenko and Fedorov in 2020. In this work, we formally prove a tight security bound for $\mathrm{SPHINCS^{+}}$ using the EasyCrypt proof assistant, establishing greater confidence in the general security of the...
PipeSwap: Forcing the Timely Release of a Secret for Atomic Swaps Across All Blockchains
Peifang Ni, Anqi Tian, Jing Xu
Cryptographic protocols
Atomic cross-chain swap, which allows users to exchange coins securely, is critical functionality to facilitate inter-currency exchange and trading. Although most classic atomic swap protocols based on Hash Timelock Contracts have been applied and deployed in practice, they are substantially far from universality due to the inherent dependence of rich scripting language supported by the underlying blockchains. The recently proposed Universal Atomic Swaps protocol [IEEE S\&P'22] takes a novel...
Loquat: A SNARK-Friendly Post-Quantum Signature based on the Legendre PRF with Applications in Ring and Aggregate Signatures
Xinyu Zhang, Ron Steinfeld, Muhammed F. Esgin, Joseph K. Liu, Dongxi Liu, Sushmita Ruj
Cryptographic protocols
We design and implement a novel post-quantum signature scheme based on the Legendre PRF, named Loquat. Prior to this work, efficient approaches for constructing post-quantum signatures with comparable security assumptions mainly used the MPC-in-the-head paradigm or hash trees. Our method departs from these paradigms and, notably, is SNARK-friendly, a feature not commonly found in earlier designs. Loquat requires significantly fewer computational operations for verification than other...
Speeding up Preimage and Key-Recovery Attacks with Highly Biased Differential-Linear Approximations
Zhongfeng Niu, Kai Hu, Siwei Sun, Zhiyu Zhang, Meiqin Wang
Attacks and cryptanalysis
We present a framework for speeding up the search for preimages of candidate one-way functions based on highly biased differential-linear distinguishers. It is naturally applicable to preimage attacks on hash functions. Further, a variant of this framework applied to keyed functions leads to accelerated key-recovery attacks. Interestingly, our technique is able to exploit related-key differential-linear distinguishers in the single-key model without querying the target encryption oracle...
Computation Efficient Structure Aware PSI From Incremental Function Secret Sharing
Gayathri Garimella, Benjamin Goff, Peihan Miao
Cryptographic protocols
Structure-Aware Private Set Intersection (sa-PSI), recently introduced by Garimella et al. (Crypto'22), is a PSI variant where Alice's input set $S_A$ has a publicly known structure (for example, interval, ball or union of balls) and Bob's input $S_B$ is an unstructured set of elements. Prior work achieves sa-PSI where the communication cost only scales with the description size of $S_A$ instead of the set cardinality. However, the computation cost remains linear in the cardinality of $S_A$,...
Improved Meet-LWE Attack via Ternary Trees
Eunmin Lee, Joohee Lee, Yongha Son, Yuntao Wang
Public-key cryptography
The Learning with Errors (LWE) problem with its variants over structured lattices has been widely exploited in efficient post-quantum cryptosystems. Recently, May suggests the Meet-LWE attack, which poses a significant advancement in the line of work on the Meet-in-the-Middle approach to analyze LWE with ternary secrets.
In this work, we generalize and extend the idea of Meet-LWE by introducing ternary trees, which result in diverse representations of the secrets. More precisely, we...
A new stand-alone MAC construct called SMAC
Dachao Wang, Alexander Maximov, Patrik Ekdahl, Thomas Johansson
Secret-key cryptography
In this paper, we present a new efficient stand-alone MAC construct based on processing using the FSM part of the stream cipher family SNOW, which in turn uses the AES round function. It offers a combination of very high speed in software and hardware with a truncatable tag. Three concrete versions of SMAC are proposed with different security levels, although other use cases are also possible. For example, SMAC can be combined with an external ciphering engine in AEAD mode. Every design...
Zero-knowledge IOPs Approaching Witness Length
Noga Ron-Zewi, Mor Weiss
Foundations
Interactive Oracle Proofs (IOPs) allow a probabilistic verifier interacting with a prover to verify the validity of an NP statement while reading only few bits from the prover messages. IOPs generalize standard Probabilistically-Checkable Proofs (PCPs) to the interactive setting, and in the few years since their introduction have already exhibited major improvements in main parameters of interest (such as the proof length and prover and verifier running times), which in turn led to...
Breaking Verifiable Delay Functions in the Random Oracle Model
Ziyi Guan, Artur Riazanov, Weiqiang Yuan
Foundations
This work resolves the open problem of whether verifiable delay functions (VDFs) can be constructed in the random oracle model.
A VDF is a cryptographic primitive that requires a long time to compute (even with parallelization), but produces a unique output that is efficiently and publicly verifiable.
We prove that VDFs with \emph{imperfect completeness} and \emph{computational uniqueness} do not exist in the random oracle model. This also rules out black-box constructions of VDFs from...
Incorporating SIS Problem into Luby-Rackoff Cipher
Yu Morishima, Masahiro Kaminaga
Secret-key cryptography
With the rise of quantum computing, the security of traditional cryptographic systems, especially those vulnerable to quantum attacks, is under threat. While public key cryptography has been widely studied in post-quantum security, symmetric-key cryptography has received less attention. This paper explores using the Ajtai-Micciancio hash function, based on the Short Integer Solution (SIS) problem, as a pseudorandom function in the Luby-Rackoff cipher. Since lattice-based problems like SIS...
Toward Full $n$-bit Security and Nonce Misuse Resistance of Block Cipher-based MACs
Wonseok Choi, Jooyoung Lee, Yeongmin Lee
Secret-key cryptography
In this paper, we study the security of MAC constructions among those classified by Chen et al. in ASIACRYPT '21. Precisely, $F^{\text{EDM}}_{B_2}$ (or $\mathsf{EWCDM}$ as named by Cogliati and Seurin in CRYPTO '16), $F^{\text{EDM}}_{B_3}$, $F^{\text{SoP}}_{B_2}$, $F^{\text{SoP}}_{B_3}$ (all as named by Chen et al.) are proved to be fully secure up to $2^n$ MAC queries in the nonce-respecting setting, improving the previous bound of $\frac{3n}{4}$-bit security. In particular,...
Multivariate Blind Signatures Revisited
Ward Beullens
Attacks and cryptanalysis
In 2017, Petzoldt, Szepieniec, and Mohamed proposed a blind signature scheme, based on multivariate cryptography. This construction has been expanded on by several other works. This short paper shows that their construction is susceptible to an efficient polynomial-time attack. The problem is that the authors implicitly assumed that for a random multivariate quadratic map $\mathcal{R}:\mathbb{F}_q^m \rightarrow \mathbb{F}_q^m$ and a collision-resistant hash function $H: \{0,1\}^* \rightarrow...
Linicrypt in the Ideal Cipher Model
Zahra Javar, Bruce M. Kapron
Foundations
We extend the Linicrypt framework for characterizing hash function security as proposed by McQuoid, Swope, and Rosulek (TCC 2018) to support constructions in the ideal cipher model.
In this setting, we give a characterization of collision- and second-preimage-resistance in terms of a linear-algebraic condition on Linicrypt programs, and present an efficient algorithm for determining whether a program satisfies the condition. As an application, we consider the case of the block cipherbased...
Security Analysis of Signal's PQXDH Handshake
Rune Fiedler, Felix Günther
Cryptographic protocols
Signal recently deployed a new handshake protocol named PQXDH to protect against "harvest-now-decrypt-later" attacks of a future quantum computer. To this end, PQXDH adds a post-quantum KEM to the Diffie-Hellman combinations of the prior X3DH handshake.
In this work, we give a reductionist security analysis of Signal's PQXDH handshake in a game-based security model that captures the targeted "maximum-exposure" security against both classical and quantum adversaries, allowing fine-grained...
A Theoretical Take on a Practical Consensus Protocol
Victor Shoup
Cryptographic protocols
The Asynchronous Common Subset (ACS) problem is a fundamental problem in distributed computing. Very recently, Das et al. (2024) developed a new ACS protocol with several desirable properties: (i) it provides optimal resilience, tolerating up to $t < n/3$ corrupt parties out of $n$ parties in total, (ii) it does not rely on a trusted set up, (iii) it utilizes only "lighweight" cryptography, which can be instantiated using just a hash function, and (iv) it has expected round complexity...
Automated Creation of Source Code Variants of a Cryptographic Hash Function Implementation Using Generative Pre-Trained Transformer Models
Elijah Pelofske, Vincent Urias, Lorie M. Liebrock
Implementation
Generative pre-trained transformers (GPT's) are a type of large language machine learning model that are unusually adept at producing novel, and coherent, natural language. Notably, these technologies have also been extended to computer programming languages with great success. However, GPT model outputs in general are stochastic and not always correct. For programming languages, the exact specification of the computer code, syntactically and algorithmically, is strictly required in order to...
Asynchronous Consensus without Trusted Setup or Public-Key Cryptography
Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, Victor Shoup
Cryptographic protocols
Byzantine consensus is a fundamental building block in distributed cryptographic problems. Despite decades of research, most existing asynchronous consensus protocols require a strong trusted setup and expensive public-key cryptography. In this paper, we study asynchronous Byzantine consensus protocols that do not rely on a trusted setup and do not use public-key cryptography such as digital signatures. We give an Asynchronous Common Subset (ACS) protocol whose security is only based on...
Secure Implementation of SRAM PUF for Private Key Generation
Raja Adhithan Radhakrishnan
Implementation
This paper endeavors to securely implement a Physical Unclonable
Function (PUF) for private data generation within Field-Programmable
Gate Arrays (FPGAs). SRAM PUFs are commonly utilized due to their
use of memory devices for generating secret data, particularly in resource constrained devices. However, their reliance on memory access poses side-channel threats such as data remanence decay and memory-based attacks, and the time required to generate secret data is significant. To address...
Vision Mark-32: ZK-Friendly Hash Function Over Binary Tower Fields
Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić
Implementation
Zero-knowledge proof systems are widely used in different applications on the Internet. Among zero-knowledge proof systems, SNARKs are a popular choice because of their fast verification time and small proof size. The efficiency of zero-knowledge systems is crucial for usability, resulting in the development of so-called arithmetization-oriented ciphers. In this work, we introduce Vision Mark-32, a modified instance of Vision defined over binary tower fields, with an optimized number of...
New Security Proofs and Techniques for Hash-and-Sign with Retry Signature Schemes
Benoît Cogliati, Pierre-Alain Fouque, Louis Goubin, Brice Minaud
Public-key cryptography
Hash-and-Sign with Retry is a popular technique to design efficient signature schemes from code-based or multivariate assumptions. Contrary to Hash-and-Sign signatures based on preimage-sampleable functions as defined by Gentry, Peikert and Vaikuntanathan (STOC 2008), trapdoor functions in code-based and multivariate schemes are not surjective. Therefore, the standard approach uses random trials. Kosuge and Xagawa (PKC 2024) coined it the Hash-and-Sign with Retry paradigm.
As many attacks...
Security Analysis of XHASH8/12
Léo Perrin
Secret-key cryptography
We have investigated both the padding scheme and the applicability of algebraic attacks to both XHash8 and XHash12. The only vulnerability of the padding scheme we can find is plausibly applicable only in the multi-rate setting---for which the authors make no claim---and is safe otherwise.
For algebraic attack relying on the computation and exploitation of a Gröbner basis, our survey of the literature suggests to base a security argument on the complexity of the variable elimination step...
Generic MitM Attack Frameworks on Sponge Constructions
Xiaoyang Dong, Boxin Zhao, Lingyue Qin, Qingliang Hou, Shun Zhang, Xiaoyun Wang
Attacks and cryptanalysis
This paper proposes general meet-in-the-middle (MitM) attack frameworks for preimage and collision attacks on hash functions based on (generalized) sponge construction.
As the first contribution, our MitM preimage attack framework covers a wide range of sponge-based hash functions, especially those with lower claimed security level for preimage compared to their output size. Those hash functions have been very widely standardized (e.g., Ascon-Hash, PHOTON, etc.), but are rarely studied...
Digital Signatures for Authenticating Compressed JPEG Images
Simon Erfurth
Applications
We construct a digital signature scheme for images that allows the image to be compressed without invalidating the signature. More specifically, given a JPEG image signed with our signature scheme, a third party can compress the image using JPEG compression, and, as long as the quantization tables only include powers of two, derive a valid signature for the compressed image, without access to the secret signing key, and without interaction with the signer. Our scheme is constructed using a...
MiniCast: Minimizing the Communication Complexity of Reliable Broadcast
Thomas Locher, Victor Shoup
Cryptographic protocols
We give a new protocol for reliable broadcast with improved communication complexity for long messages. Namely, to reliably broadcast a message a message $m$ over an asynchronous network to a set of $n$ parties, of which fewer than $n/3$ may be corrupt, our protocol achieves a communication complexity of $1.5 |m| n + O( \kappa n^2 \log(n) )$, where $\kappa$ is the output length of a collision-resistant hash function. This result improves on the previously best known bound for long...
Permutation-Based Hash Chains with Application to Password Hashing
Charlotte Lefevre, Bart Mennink
Secret-key cryptography
Hash chain based password systems are a useful way to guarantee authentication with one-time passwords. The core idea is specified in RFC 1760 as S/Key. At CCS 2017, Kogan et al. introduced T/Key, an improved password system where one-time passwords are only valid for a limited time period. They proved security of their construction in the random oracle model under a basic modeling of the adversary. In this work, we make various advances in the analysis and instantiation of hash chain based...
Fast Parallelizable Misuse-Resistant Authenticated Encryption: Low Latency (Decryption-Fast) SIV
Mustafa Khairallah
Secret-key cryptography
MRAE security is an important goal for many AEAD applications where the nonce uniqueness cannot be maintained and security risks are significant. However, MRAE schemes can be quite expensive. Two of the SoTA MRAE-secure schemes; Deoxys-II and AES-GCM-SIV rely on internal parallelism and special instructions to achieve competitive performance. However, they both suffer from the same bottleneck, they have at least one call to the underlying primitive that cannot be parallelized to any other...
Lattice-Based Timed Cryptography
Russell W. F. Lai, Giulio Malavolta
Public-key cryptography
Timed cryptography studies primitives that retain their security only for a predetermined amount of time, such as proofs of sequential work and time-lock puzzles. This feature has proven to be useful in a large number of practical applications, e.g. randomness generation, sealed-bid auctions, and fair multi-party computation. However, the current state of affairs in timed cryptography is unsatisfactory: Virtually all efficient constructions rely on a single sequentiality assumption, namely...
Supersingular Hashing using Lattès Maps
Daniel Larsson
Cryptographic protocols
In this note we propose a variant (with four sub-variants) of the Charles--Goren--Lauter (CGL) hash function using Lattès maps over finite fields. These maps define dynamical systems on the projective line. The underlying idea is that these maps ``hide'' the $j$-invariants in each step in the isogeny chain, similar to the Merkle--Damgård construction. This might circumvent the problem concerning the knowledge of the starting (or ending) curve's endomorphism ring, which is known to create...
Public-Algorithm Substitution Attacks: Subverting Hashing and Verification
Mihir Bellare, Doreen Riepel, Laura Shea
Applications
In the domain of algorithm substitution attacks (ASAs), we initiate work in a new direction, namely to consider such attacks on algorithms that are public, meaning contain no secret-key material. Examples are hash functions, and verification algorithms of signature schemes and non-interactive arguments. In what we call a PA-SA (Public-Algorithm Substitution Attack), the big-brother adversary replaces the public algorithm $f$ with a subverted algorithm, while retaining a backdoor to the...
Quantum Implementation and Analysis of SHA-2 and SHA-3
Kyungbae Jang, Sejin Lim, Yujin Oh, Hyunjun Kim, Anubhab Baksi, Sumanta Chakraborty, Hwajeong Seo
Implementation
Quantum computers have the potential to solve hard problems that are nearly impossible to solve by classical computers, this has sparked a surge of research to apply quantum technology and algorithm against the cryptographic systems to evaluate for its quantum resistance. In the process of selecting post-quantum standards, NIST categorizes security levels based on the complexity that quantum computers would require to crack AES encryption (levels 1, 3 and 5) and SHA-2 or SHA-3 (levels 2 and...
Reckle Trees: Updatable Merkle Batch Proofs with Applications
Charalampos Papamanthou, Shravan Srinivasan, Nicolas Gailly, Ismael Hishon-Rezaizadeh, Andrus Salumets, Stjepan Golemac
Cryptographic protocols
We propose Reckle trees, a new vector commitment based on succinct RECursive arguments and MerKLE trees. Reckle trees' distinguishing feature is their support for succinct batch proofs that are updatable - enabling new applications in the blockchain setting where a proof needs to be computed and efficiently maintained over a moving stream of blocks. Our technical approach is based on embedding the computation of the batch hash inside the recursive Merkle verification via a hash-based...
Improving Generic Attacks Using Exceptional Functions
Xavier Bonnetain, Rachelle Heim Boissier, Gaëtan Leurent, André Schrottenloher
Attacks and cryptanalysis
Over the past ten years, there have been many attacks on symmetric constructions using the statistical properties of random functions. Initially, these attacks targeted iterated hash constructions and their combiners, developing a wide array of methods based on internal collisions and on the average behavior of iterated random functions. More recently, Gilbert et al. (EUROCRYPT 2023) introduced a forgery attack on so-called duplex-based Authenticated Encryption modes which was based on...
Making Hash-based MVBA Great Again
Hanwen Feng, Zhenliang Lu, Tiancheng Mai, Qiang Tang
Cryptographic protocols
Multi-valued Validated Asynchronous Byzantine Agreement ($\mathsf{MVBA}$) is one essential primitive for many distributed protocols, such as asynchronous Byzantine fault-tolerant scenarios like atomic broadcast ($\mathsf{ABC}$), asynchronous distributed key generation, and many others.
Recent efforts (Lu et al, PODC' 20) have pushed the communication complexity of $\mathsf{MVBA}$ to optimal $O(\ell n + \lambda n^2)$, which, however, heavily rely on ``heavyweight'' cryptographic tools,...
Extremely Simple (Almost) Fail-Stop ECDSA Signatures
Mario Yaksetig
Public-key cryptography
Fail-stop signatures are digital signatures that allow a signer to prove that a specific forged signature is indeed a forgery. After such a proof is published, the system can be stopped.
We introduce a new simple ECDSA fail-stop signature scheme. Our proposal is based on the minimal assumption that an adversary with a quantum computer is not able to break the (second) preimage resistance of a cryptographically-secure hash function. Our scheme is as efficient as traditional ECDSA, does not...
Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures
Rutchathon Chairattana-Apirom, Stefano Tessaro, Chenzhi Zhu
Cryptographic protocols
This paper gives the first lattice-based two-round threshold signature based on lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds.
Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT ’23) based on specific linear hash functions, which in turns can be seen as a generalization of...
The 2Hash OPRF Framework and Efficient Post-Quantum Instantiations
Ward Beullens, Lucas Dodgson, Sebastian Faller, Julia Hesse
Cryptographic protocols
An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for jointly evaluating a Pseudo-Random Function (PRF), where a user has an input x and a server has an input k. At the end of the protocol, the user learns the evaluation of the PRF using key k at the value x, while the server learns nothing about the user's input or output.
OPRFs are a prime tool for building secure authentication and key exchange from passwords, private set intersection, private information retrieval,...
A Cautionary Note: Side-Channel Leakage Implications of Deterministic Signature Schemes
Hermann Seuschek, Johann Heyszl, Fabrizio De Santis
Two recent proposals by Bernstein and Pornin emphasize the use of deterministic signatures in DSA and its elliptic curve-based variants. Deterministic signatures derive the required ephemeral key value in a deterministic manner from the message to be signed and the secret key instead of using random number generators. The goal is to prevent severe security issues, such as the straight-forward secret key recovery from low quality random numbers. Recent developments have raised skepticism...
Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations
Joseph Carolan, Alexander Poremba
Foundations
Sponge hashing is a widely used class of cryptographic hash algorithms which underlies the current international hash function standard SHA-3. In a nutshell, a sponge function takes as input a bit-stream of any length and processes it via a simple iterative procedure: it repeatedly feeds each block of the input into a so-called block function, and then produces a digest by once again iterating the block function on the final output bits. While much is known about the post-quantum security of...
Permutation-Based Hashing Beyond the Birthday Bound
Charlotte Lefevre, Bart Mennink
Secret-key cryptography
It is known that the sponge construction is tightly indifferentiable from a random oracle up to around $2^{c/2}$ queries, where $c$ is the capacity. In particular, it cannot provide generic security better than half of the underlying permutation size. In this paper, we aim to achieve hash function security beating this barrier. We present a hashing mode based on two $b$-bit permutations named the double sponge. The double sponge can be seen as the sponge embedded within the double block...
Collision Resistance from Multi-Collision Resistance for all Constant Parameters
Jan Buzek, Stefano Tessaro
Foundations
A $t$-multi-collision-resistant hash function ($t$-MCRH) is a family of shrinking functions for which it is computationally hard to find $t$ distinct inputs mapping to the same output for a function sampled from this family. Several works have shown that $t$-MCRHs are sufficient for many of the applications of collision-resistant hash functions (CRHs), which correspond to the special case of $t = 2$.
An important question is hence whether $t$-MCRHs for $t > 2$ are fundamentally weaker...
Preimage Attacks on Reduced-Round Ascon-Xof
Seungjun Baek, Giyoon Kim, Jongsung Kim
Attacks and cryptanalysis
Ascon, a family of algorithms that supports authenticated encryption and hashing, has been selected as the new standard for lightweight cryptography in the NIST Lightweight Cryptography Project. Ascon’s permutation and authenticated encryption have been actively analyzed, but there are relatively few analyses on the hashing. In this paper, we concentrate on preimage attacks on Ascon-Xof. We focus on linearizing the polynomials leaked by the hash value to find its inverse. In an attack on...
Improved Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing
Xiaoyang Dong, Jian Guo, Shun Li, Phuong Pham, Tianyu Zhang
Attacks and cryptanalysis
The Nostradamus attack was originally proposed as a security vulnerability for a hash function by Kelsey and Kohno at EUROCRYPT 2006. It requires the attacker to commit to a hash value y of an iterated hash function H. Subsequently, upon being provided with a message prefix P, the adversary’s task is to identify a suffix S such that H(P||S) equals y. Kelsey and Kohno demonstrated a herding attack requiring $O(\sqrt{n}\cdot 2^{2n/3})$ evaluations of the compression function of H, where n...
Automating Collision Attacks on RIPEMD-160
Yingxin Li, Fukang Liu, Gaoli Wang
Attacks and cryptanalysis
As an ISO/IEC standard, the hash function RIPEMD-160 has been used to generate the Bitcoin address with SHA-256. However, due to the complex double-branch structure of RIPEMD-160, the best collision attack only reaches 36 out of 80 steps of RIPEMD-160, and the best semi-free-start (SFS) collision attack only reaches 40 steps. To improve the 36-step collision attack proposed at EUROCRYPT 2023, we explored the possibility of using different message differences to increase the number of...
We initiate the study of the black-box complexity of private-key functional encryption (FE). Of central importance in the private-key setting is the inner-product functionality, which is currently only known from assumptions that imply public-key encryption, such as Decisional Diffie-Hellman or Learning-with-Errors. As our main result, we rule out black-box constructions of private-key inner-product FE from random oracles. This implies a black-box separation between private-key...
Perceptual hash functions map multimedia content that is perceptually close to outputs strings that are identical or similar. They are widely used for the identification of protected copyright and illegal content in information sharing services: a list of undesirable files is hashed with a perceptual hash function and compared, server side, to the hash of the content that is uploaded. Unlike cryptographic hash functions, the design details of perceptual hash functions are typically kept...
Pseudo-Random Injections (PRIs) have had several applications in symmetric-key cryptography, such as in the idealization of Authenticated Encryption with Associated Data (AEAD) schemes, building robust AEAD, and, recently, in converting a committing AEAD scheme into a succinctly committing AEAD scheme. In Crypto 2024, Bellare and Hoang showed that if an AEAD scheme is already committing, it can be transformed into a succinctly committed scheme by encrypting part of the plaintext using a PRI....
We introduce a method for enforcing covenants on Bitcoin outputs without requiring any changes to Bitcoin by designing a hash collision based equivalence check which bridges Bitcoin's limited Big Script to Bitcoin's Small Script. This allows us evaluate the signature of the spending transaction (available only to Big Script) in Small Script. As Small Script enables arbitrary computations, we can introspect into the spending transaction and enforce covenants on it. Our approach leverages...
Boolean functions play an important role in designing and analyzing many cryptographic systems, such as block ciphers, stream ciphers, and hash functions, due to their unique cryptographic properties such as nonlinearity, correlation immunity, and algebraic properties. The secure evaluation of Boolean functions or Secure Boolean Evaluation (SBE) is an important area of research. SBE allows parties to jointly compute Boolean functions without exposing their private inputs. SBE finds...
A Timed Commitment (TC) with time parameter $t$ is hiding for time at most $t$, that is, commitments can be force-opened by any third party within time $t$. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck. In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by...
In 2020, Castryck-Decru-Smith constructed a hash function, using the (2,2)-isogeny graph of superspecial principally polarized abelian surfaces. In their construction, the initial surface was chosen from vertices very "close" to the square of a supersingular elliptic curve with a known endomorphism ring. In this paper, we introduce an algorithm for detecting a collision on their hash function. Under some heuristic assumptions, the time complexity and space complexity of our algorithm are...
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
In 2018 Cai et al. proposed a multi-party quantum key agreement with five-qubit Brown states. They confirmed the security of their proposed scheme. However, Elhadad, Ahmed, et al. found the scheme cannot resist the collusion attack launched by legal participants. They suggested a modification and declared that their improved version is capable of resisting this type of attack. Nevertheless, after analysis, we found that the collusion attack still exists. Subsequently, we proposed a...
We provide explicit descriptions for radical 2-isogenies in dimensions one, two and three using theta coordinates. These formulas allow us to efficiently navigate in the corresponding isogeny graphs. As an application of this, we implement different versions of the CGL hash func- tion. Notably, the three-dimensional version is fastest, which demonstrates yet another potential of using higher dimensional isogeny graphs in cryptography.
Indifferentiability is a popular cryptographic paradigm for analyzing the security of ideal objects---both in a classical as well as in a quantum world. It is typically stated in the form of a composable and simulation-based definition, and captures what it means for a construction (e.g., a cryptographic hash function) to be ``as good as'' an ideal object (e.g., a random oracle). Despite its strength, indifferentiability is not known to offer security against pre-processin} attacks in which...
We construct the first multi-input functional encryption (MIFE) and indistinguishability obfuscation (iO) schemes for pseudorandom functionalities, where the output of the functionality is pseudorandom for every input seen by the adversary. Our MIFE scheme relies on LWE and evasive LWE (Wee, Eurocrypt 2022 and Tsabary, Crypto 2022) for constant arity functions, and a strengthening of evasive LWE for polynomial arity. Thus, we obtain the first MIFE and iO schemes for a nontrivial...
We present an asynchronous secure multi-party computation (MPC) protocol that is practically efficient. Our protocol can evaluate any arithmetic circuit with linear communication in the number of parties per multiplication gate, while relying solely on computationally lightweight cryptography such as hash function and symmetric encryption. Our protocol is optimally resilient and tolerates $t$ malicious parties among $n = 3t+1$ parties. At the technical level, we manage to apply the...
Non-interactive zero-knowledge proofs (NIZK) are essential building blocks in threshold cryptosystems like multiparty signatures, distributed key generation, and verifiable secret sharing, allowing parties to prove correct behavior without revealing secrets. Furthermore, universally composable (UC) NIZKs enable seamless composition in the larger cryptosystems. A popular way to construct NIZKs is to compile interactive protocols using the Fiat-Shamir transform. Unfortunately, Fiat-Shamir...
Asynchronous multiparty computation (AMPC) requires an input agreement phase where all participants have a consistent view of the set of private inputs. While the input agreement problem can be precisely addressed by a Byzantine fault-tolerant consensus known as Asynchronous Common Subset (ACS), existing ACS constructions with potential post-quantum security have a large $\widetilde{\mathcal{O}}(n^3)$ communication complexity for a network of $n$ nodes. This poses a bottleneck for AMPC in...
Multi-signature schemes are gaining significant interest due to their blockchain applications. Of particular interest are two-round schemes in the plain public-key model that offer key aggregation, and whose security is based on the hardness of the DLOG problem. Unfortunately, despite substantial recent progress, the security proofs of the proposed schemes provide rather insufficient concrete guarantees (especially for 256-bit groups). This frustrating situation has so far been approached...
Multi-valued validated Byzantine agreement (MVBA), a fundamental primitive of distributed computing, enables $n$ processes to agree on a valid $\ell$-bit value, despite $t$ faulty processes behaving arbitrarily. Among hash-based protocols for the asynchronous setting with adaptive faults, the state-of-the-art HMVBA protocol has optimal $O(1)$ time complexity and near-optimal $O(n \ell + n^2 \kappa \log n)$ bit complexity, but tolerates only $t < n/5$ faults. We present REDUCER, an MVBA...
Homomorphic Encryption (HE) enables operations on encrypted data without requiring decryption, thus allowing for secure handling of confidential data within smart contracts. Among the known HE schemes, FHEW and TFHE are particularly notable for use in smart contracts due to their lightweight nature and support for arbitrary logical gates. In contrast, other HE schemes often require several gigabytes of keys and are limited to supporting only addition and multiplication. As a result, there...
We give a new approach for constructing statistical ZAP arguments (a two-message public-coin statistically witness indistinguishable argument) from quasi-polynomial hardness of the learning with errors (LWE) assumption with a polynomial modulus-to-noise ratio. Previously, all ZAP arguments from lattice-based assumptions relied on correlation-intractable hash functions. In this work, we present the first construction of a ZAP from LWE via the classic hidden-bits paradigm. Our construction...
Collision-resistant hashing (CRH) is a cornerstone of cryptographic protocols. However, despite decades of research, no construction of a CRH based solely on one-way functions has been found. Moreover, there are black-box limitations that separate these two primitives. Harnik and Naor [HN10] overcame this black-box barrier by introducing the notion of instance compression. Instance compression reduces large NP instances to a size that depends on their witness size while preserving the...
A trapdoor Memory-Hard Function is a function that is memory-hard to evaluate for any party who does not have a trapdoor, but is substantially less expensive to evaluate with the trapdoor. Biryukov and Perin (ASIACRYPT 2017) introduced the first candidate trapdoor Memory-Hard Function called Diodon which modifies a Memory-Hard Function called Scrypt by replacing a hash chain with repeated squaring modulo a composite number $N=pq$. The trapdoor, which consists of the prime factors $p$ and...
For Password-Based Authenticated Key Exchange (PAKE), an idealized setup such as random oracle (RO) or a trusted setup such as common reference string (CRS) is a must in the universal composability (UC) framework (Canetti, FOCS 2001). Given the potential failure of a CRS or RO setup, it is natural to consider distributing trust among the two setups, resulting a CRS-or-RO-setup (i.e., CoR-setup). However, the infeasibility highlighted by Katz et al. (PODC 2014) suggested that it is...
We present two new arithmetization oriented hash functions based on RPO [Ashur, kindi, Meier, Szepieniec, Threadbare; ePrint 2022/1577] and XHash-12 [Ashur, Bhati, Kindi, Mahzoun, Perrin; ePrint 2023/1045] adapted for $p=2^{31}-1$ and ready to use in Circle STARKs [Habock, Levit, Papini; ePrint 2024/278].
Masking schemes are key in thwarting side-channel attacks due to their robust theoretical foundation. Transitioning from Boolean to arithmetic (B2A) masking is a necessary step in various cryptography schemes, including hash functions, ARX-based ciphers, and lattice-based cryptography. While there exists a significant body of research focusing on B2A software implementations, studies pertaining to hardware implementations are quite limited, with the majority dedicated solely to creating...
We develop and implement AlgoROM, a tool to systematically analyze the security of a wide class of symmetric primitives in idealized models of computation. The schemes that we consider are those that can be expressed over an alphabet consisting of XOR and function symbols for hash functions, permutations, or block ciphers. We implement our framework in OCaml and apply it to a number of prominent constructions, which include the Luby–Rackoff (LR), key-alternating Feistel (KAF), and...
Tweakable enciphering modes (TEMs) provide security in a variety of storage and space-critical applications like disk and file-based encryption, and packet-based communication protocols, among others. XCB-AES (known as XCBv2) is specified in the IEEE 1619.2 standard for encryption of sector-oriented storage media and it comes with a proof of security for block-aligned input messages. In this work, we demonstrate the $\textit{first}$ and most efficient plaintext recovery attack on...
This work describes a digital signature scheme constructed from a zero-knowledge proof of knowledge of a pre-image of the Rescue Prime Optimized (RPO) permutation. The proof of knowledge is constructed with the DEEP-ALI interactive oracle proof combined with the Ben-Sasson--Chiesa--Spooner (BCS) transformation in the random oracle model. The EUF-CMA security of the resulting signature scheme is established from the UC-friendly security properties of the BCS transformation and the pre-image...
In this paper, we introduce the notion of relaxed lattice-based programmable hash function (RPHF), which is a novel variant of lattice-based programmable hash functions (PHFs). Lattice-based PHFs, together with preimage trapdoor functions (TDFs), have been widely utilized (implicitly or explicitly) in the construction of adaptively secure identity-based encryption (IBE) schemes. The preimage length and the output length of the underlying PHF and TDF together determine the user secret key and...
XCB, a tweakable enciphering mode, is part of IEEE Std. 1619.2 for shared storage media. We show that all versions of XCB are not secure through three plaintext recovery attacks. A key observation is that XCB behaves like an LRW1-type tweakable block cipher for single-block messages, which lacks CCA security. The first attack targets one-block XCB, using three queries to recover the plaintext. The second one requires four queries to recover the plaintext that excludes one block. The last one...
Keccak acts as the hash algorithm and eXtendable-Output Function (XOF) specified in the NIST standard drafts for Kyber and Dilithium. The Keccak output is highly correlated with sensitive information. While in RSA and ECDSA, hash-like components are only used to process public information, such as the message. The importance and sensitivity of hash-like components like Keccak are much higher in Kyber and Dilithium than in traditional public-key cryptography. However, few works study Keccak...
Private set intersection (PSI) is a type of private set operation (PSO) for which concretely efficient linear-complexity protocols do exist. However, the situation is currently less satisfactory for other relevant PSO problems such as private set union (PSU): For PSU, the most promising protocols either rely entirely on computationally expensive public-key operations or suffer from substantial communication overhead. In this work, we present the first PSU protocol that is mainly based...
Proofs of partial knowledge, first considered by Cramer, Damgård and Schoenmakers (CRYPTO'94) and De Santis et al. (FOCS'94), allow for proving the validity of $k$ out of $n$ different statements without revealing which ones those are. In this work, we present a new approach for transforming certain proofs system into new ones that allows for proving partial knowledge. The communication complexity of the resulting proof system only depends logarithmically on the total number of statements...
We present a tweakable wide block cipher called Mystrium and show it as the fastest such primitive on low-end processors that lack dedicated AES or other cryptographic instructions, such as ARM Cortex-A7. Mystrium is based on the provably secure double-decker mode, that requires a doubly extendable cryptographic keyed (deck) function and a universal hash function. We build a new deck function called Xymmer that for its compression part uses Multimixer-128, the fastest universal hash for...
We study error detection and error correction in a computationally bounded world, where errors are introduced by an arbitrary polynomial time adversarial channel. We consider codes where the encoding procedure uses random coins and define two distinct variants: (1) in randomized codes, fresh randomness is chosen during each encoding operation and is unknown a priori, while (2) in self-seeded codes, the randomness of the encoding procedure is fixed once upfront and is known to the adversary....
We revisit the notion of threshold Password-Authenticated Key Exchange (tPAKE), and we extend it to augmented tPAKE (atPAKE), which protects password information even in the case all servers are compromised, except for allowing an (inevitable) offline dictionary attack. Compared to prior notions of tPAKE this is analogous to replacing symmetric PAKE, where the server stores the user's password, with an augmented (or asymmetric) PAKE, like OPAQUE [JKX18], where the server stores a password...
Digital signature is a fundamental cryptographic primitive and is widely used in the real world. Unfortunately, the current digital signature standards like EC-DSA and RSA are not quantum-resistant. Among post-quantum cryptography (PQC), isogeny-based signatures preserve some advantages of elliptic curve cryptosystems, particularly offering small signature sizes. Currently, SQIsign and its variants are the most promising isogeny-based digital signature schemes. In this paper, we propose a...
The area of modern zero-knowledge proof systems has seen a significant rise in popularity over the last couple of years, with new techniques and optimized constructions emerging on a regular basis. As the field matures, the aspect of implementation attacks becomes more relevant, however side-channel attacks on zero-knowledge proof systems have seen surprisingly little treatment so far. In this paper we give an overview of potential attack vectors and show that some of the underlying...
An ongoing research challenge in symmetric cryptography is to design an authenticated encryption (AE) with a commitment to the secret key or preferably to the entire context. One way to achieve this is to use a transform on an existing AE scheme, if possible with no output length expansion. At EUROCRYPT'22, Bellare and Hoang proposed the HtE transform, which lifts key-commitment to context-commitment. In the same year at ESORICS'22, Chan and Rogaway proposed the CTX transform, which works on...
In recent years a new class of symmetric-key primitives over $\mathbb{F}_p$ that are essential to Multi-Party Computation and Zero-Knowledge Proofs based protocols has emerged. Towards improving the efficiency of such primitives, a number of new block ciphers and hash functions over $\mathbb{F}_p$ were proposed. These new primitives also showed that following alternative design strategies to the classical Substitution-Permutation Network (SPN) and Feistel Networks leads to more efficient...
Redis (Remote Dictionary Server) is a general purpose, in-memory database that supports a rich array of functionality, including various Probabilistic Data Structures (PDS), such as Bloom filters, Cuckoo filters, as well as cardinality and frequency estimators. These PDS typically perform well in the average case. However, given that Redis is intended to be used across a diverse array of applications, it is crucial to evaluate how these PDS perform under worst-case scenarios, i.e., when...
The recent VOLE-based interactive zero-knowledge (VOLE-ZK) protocols along with non-interactive zero-knowledge (NIZK) proofs based on MPC-in-the-Head (MPCitH) and VOLE-in-the-Head (VOLEitH) extensively utilize the commitment schemes, which adopt a circular correlation robust (CCR) hash function as the core primitive. Nevertheless, the state-of-the-art CCR hash construction by Guo et al. (S&P'20), building from random permutations, can only provide 128-bit security, when it is instantiated...
We give the first construction of non-interactive zero-knowledge (NIZK) arguments from post-quantum assumptions other than Learning with Errors. In particular, we achieve NIZK under the polynomial hardness of the Learning Parity with Noise (LPN) assumption, and the exponential hardness of solving random under-determined multivariate quadratic equations (MQ). We also construct NIZK satisfying statistical zero-knowledge assuming a new variant of LPN, Dense-Sparse LPN, introduced by Dao and...
For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...
In this paper, we formulate a special class of systems of linear equations over finite fields that appears naturally in the provable security analysis of several MAC and PRF modes of operation. We derive lower bounds on the number of solutions for such systems adhering to some predefined restrictions, and apply these lower bounds to derive tight PRF security for several constructions. We show security up to $2^{3n/4}$ queries for the single-keyed variant of the Double-block Hash-then-Sum...
We investigate shift-invariant vectorial Boolean functions on $n$ bits that are lifted from Boolean functions on $k$ bits, for $k\leq n$. We consider vectorial functions that are not necessarily permutations, but are, in some sense, almost bijective. In this context, we define an almost lifting as a Boolean function for which there is an upper bound on the number of collisions of its lifted functions that does not depend on $n$. We show that if a Boolean function with diameter $k$ is an...
The SHA-3 standard consists of four cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384 and SHA3-512, and two extendable-output functions (XOFs), called SHAKE128 and SHAKE256. In this paper, we study the collision resistance of the SHA-3 instances. By analyzing the nonlinear layer, we introduce the concept of maximum difference density subspace, and develop a new target internal difference algorithm by probabilistic linearization. We also exploit new strategies for optimizing...
The collision-resistant hash function is an early cryptographic primitive that finds extensive use in various applications. Remarkably, the Merkle-Damgård and Merkle tree hash structures possess the collision-resistance preserving property, meaning the hash function remains collision-resistant when the underlying compression function is collision-resistant. This raises the intriguing question of whether reducing the number of underlying compression function calls with the...
Fully homomorphic encryption (FHE) enables arbitrary computation on encrypted data, but certain applications remain prohibitively expensive in the encrypted domain. As a case in point, comparing two encrypted sets of data is extremely computationally expensive due to the large number of comparison operators required. In this work, we propose a novel methodology for encrypted set similarity inspired by the MinHash algorithm and the CGGI FHE scheme. Doing comparisons in FHE requires...
As quantum computing progresses, the assessment of cryptographic algorithm resilience against quantum attack gains significance interests in the field of cryptanalysis. Consequently, this paper implements the depth-optimized quantum circuit of Korean hash function (i.e., LSH) and estimates its quantum attack cost in quantum circuits. By utilizing an optimized quantum adder and employing parallelization techniques, the proposed quantum circuit achieves a 78.8\% improvement in full depth and a...
Assuming the hardness of LWE and the existence of IO, we construct a public-key encryption scheme that is IND-CCA secure but fails to satisfy even a weak notion of indistinguishability security with respect to selective opening attacks. Prior to our work, such a separation was known only from stronger assumptions such as differing inputs obfuscation (Hofheinz, Rao, and Wichs, PKC 2016). Central to our separation is a new hash family, which may be of independent interest. Specifically,...
The Internet has plenty of images that are transformations (e.g., resize, blur) of confidential original images. Several scenarios (e.g., selling images over the Internet, fighting disinformation, detecting deep fakes) would highly benefit from systems allowing to verify that an image is the result of a transformation applied to a confidential authentic image. In this paper, we focus on systems for proving and verifying the correctness of transformations of authentic images guaranteeing: 1)...
A threshold signature scheme distributes the ability to generate signatures through distributed key generation and signing protocols. A threshold signature scheme should be functionally interchangeable, meaning that a signature produced by a threshold scheme should be verifiable by the same algorithm used for non-threshold signatures. To resist future attacks from quantum adversaries, lattice-based threshold signatures are desirable. However, the performance of existing lattice-based...
In this work, we present various hardware implementations for the lightweight cipher ASCON, which was recently selected as the winner of the NIST organized Lightweight Cryptography (LWC) competition. We cover encryption + tag generation and decryption + tag verification for the ASCON AEAD and also the ASCON hash function. On top of the usual (unprotected) implementation, we present side-channel protection (threshold countermeasure) and triplication/majority-based fault protection. To the...
Multi-party computation (\textsf{MPC}) is a major research interest in modern cryptography, and Privacy Set Intersection (\textsf{PSI}) is an important research topic within \textsf{MPC}. Its main function is to allow two parties to compute the intersection of their private sets without revealing any other information. Therefore, \textsf{PSI} can be applied to various real-world scenarios, such as the Industrial Internet of Things (\textsf{IIOT}). Chase and Miao presented a paper on...
Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage...
The current cryptographic frameworks like RSA, ECC, and AES are potentially under quantum threat. Quantum cryptographic and post-quantum cryptography are being extensively researched for securing future information. The quantum computer and quantum algorithms are still in the early developmental stage and thus lack scalability for practical application. As a result of these challenges, most researched PQC methods are lattice-based, code-based, ECC isogeny, hash-based, and multivariate...
Cryptographic hash functions are said to be the work-horses of modern cryptography. One of the strongest approaches to assess a cryptographic hash function's security is indifferentiability. Informally, indifferentiability measures to what degree the function resembles a random oracle when instantiated with an ideal underlying primitive. However, proving the indifferentiability security of hash functions has been challenging due to complex simulator designs and proof arguments. The Sponge...
$\mathrm{SPHINCS^{+}}$ is a post-quantum signature scheme that, at the time of writing, is being standardized as $\mathrm{SLH\text{-}DSA}$. It is the most conservative option for post-quantum signatures, but the original tight proofs of security were flawed—as reported by Kudinov, Kiktenko and Fedorov in 2020. In this work, we formally prove a tight security bound for $\mathrm{SPHINCS^{+}}$ using the EasyCrypt proof assistant, establishing greater confidence in the general security of the...
Atomic cross-chain swap, which allows users to exchange coins securely, is critical functionality to facilitate inter-currency exchange and trading. Although most classic atomic swap protocols based on Hash Timelock Contracts have been applied and deployed in practice, they are substantially far from universality due to the inherent dependence of rich scripting language supported by the underlying blockchains. The recently proposed Universal Atomic Swaps protocol [IEEE S\&P'22] takes a novel...
We design and implement a novel post-quantum signature scheme based on the Legendre PRF, named Loquat. Prior to this work, efficient approaches for constructing post-quantum signatures with comparable security assumptions mainly used the MPC-in-the-head paradigm or hash trees. Our method departs from these paradigms and, notably, is SNARK-friendly, a feature not commonly found in earlier designs. Loquat requires significantly fewer computational operations for verification than other...
We present a framework for speeding up the search for preimages of candidate one-way functions based on highly biased differential-linear distinguishers. It is naturally applicable to preimage attacks on hash functions. Further, a variant of this framework applied to keyed functions leads to accelerated key-recovery attacks. Interestingly, our technique is able to exploit related-key differential-linear distinguishers in the single-key model without querying the target encryption oracle...
Structure-Aware Private Set Intersection (sa-PSI), recently introduced by Garimella et al. (Crypto'22), is a PSI variant where Alice's input set $S_A$ has a publicly known structure (for example, interval, ball or union of balls) and Bob's input $S_B$ is an unstructured set of elements. Prior work achieves sa-PSI where the communication cost only scales with the description size of $S_A$ instead of the set cardinality. However, the computation cost remains linear in the cardinality of $S_A$,...
The Learning with Errors (LWE) problem with its variants over structured lattices has been widely exploited in efficient post-quantum cryptosystems. Recently, May suggests the Meet-LWE attack, which poses a significant advancement in the line of work on the Meet-in-the-Middle approach to analyze LWE with ternary secrets. In this work, we generalize and extend the idea of Meet-LWE by introducing ternary trees, which result in diverse representations of the secrets. More precisely, we...
In this paper, we present a new efficient stand-alone MAC construct based on processing using the FSM part of the stream cipher family SNOW, which in turn uses the AES round function. It offers a combination of very high speed in software and hardware with a truncatable tag. Three concrete versions of SMAC are proposed with different security levels, although other use cases are also possible. For example, SMAC can be combined with an external ciphering engine in AEAD mode. Every design...
Interactive Oracle Proofs (IOPs) allow a probabilistic verifier interacting with a prover to verify the validity of an NP statement while reading only few bits from the prover messages. IOPs generalize standard Probabilistically-Checkable Proofs (PCPs) to the interactive setting, and in the few years since their introduction have already exhibited major improvements in main parameters of interest (such as the proof length and prover and verifier running times), which in turn led to...
This work resolves the open problem of whether verifiable delay functions (VDFs) can be constructed in the random oracle model. A VDF is a cryptographic primitive that requires a long time to compute (even with parallelization), but produces a unique output that is efficiently and publicly verifiable. We prove that VDFs with \emph{imperfect completeness} and \emph{computational uniqueness} do not exist in the random oracle model. This also rules out black-box constructions of VDFs from...
With the rise of quantum computing, the security of traditional cryptographic systems, especially those vulnerable to quantum attacks, is under threat. While public key cryptography has been widely studied in post-quantum security, symmetric-key cryptography has received less attention. This paper explores using the Ajtai-Micciancio hash function, based on the Short Integer Solution (SIS) problem, as a pseudorandom function in the Luby-Rackoff cipher. Since lattice-based problems like SIS...
In this paper, we study the security of MAC constructions among those classified by Chen et al. in ASIACRYPT '21. Precisely, $F^{\text{EDM}}_{B_2}$ (or $\mathsf{EWCDM}$ as named by Cogliati and Seurin in CRYPTO '16), $F^{\text{EDM}}_{B_3}$, $F^{\text{SoP}}_{B_2}$, $F^{\text{SoP}}_{B_3}$ (all as named by Chen et al.) are proved to be fully secure up to $2^n$ MAC queries in the nonce-respecting setting, improving the previous bound of $\frac{3n}{4}$-bit security. In particular,...
In 2017, Petzoldt, Szepieniec, and Mohamed proposed a blind signature scheme, based on multivariate cryptography. This construction has been expanded on by several other works. This short paper shows that their construction is susceptible to an efficient polynomial-time attack. The problem is that the authors implicitly assumed that for a random multivariate quadratic map $\mathcal{R}:\mathbb{F}_q^m \rightarrow \mathbb{F}_q^m$ and a collision-resistant hash function $H: \{0,1\}^* \rightarrow...
We extend the Linicrypt framework for characterizing hash function security as proposed by McQuoid, Swope, and Rosulek (TCC 2018) to support constructions in the ideal cipher model. In this setting, we give a characterization of collision- and second-preimage-resistance in terms of a linear-algebraic condition on Linicrypt programs, and present an efficient algorithm for determining whether a program satisfies the condition. As an application, we consider the case of the block cipherbased...
Signal recently deployed a new handshake protocol named PQXDH to protect against "harvest-now-decrypt-later" attacks of a future quantum computer. To this end, PQXDH adds a post-quantum KEM to the Diffie-Hellman combinations of the prior X3DH handshake. In this work, we give a reductionist security analysis of Signal's PQXDH handshake in a game-based security model that captures the targeted "maximum-exposure" security against both classical and quantum adversaries, allowing fine-grained...
The Asynchronous Common Subset (ACS) problem is a fundamental problem in distributed computing. Very recently, Das et al. (2024) developed a new ACS protocol with several desirable properties: (i) it provides optimal resilience, tolerating up to $t < n/3$ corrupt parties out of $n$ parties in total, (ii) it does not rely on a trusted set up, (iii) it utilizes only "lighweight" cryptography, which can be instantiated using just a hash function, and (iv) it has expected round complexity...
Generative pre-trained transformers (GPT's) are a type of large language machine learning model that are unusually adept at producing novel, and coherent, natural language. Notably, these technologies have also been extended to computer programming languages with great success. However, GPT model outputs in general are stochastic and not always correct. For programming languages, the exact specification of the computer code, syntactically and algorithmically, is strictly required in order to...
Byzantine consensus is a fundamental building block in distributed cryptographic problems. Despite decades of research, most existing asynchronous consensus protocols require a strong trusted setup and expensive public-key cryptography. In this paper, we study asynchronous Byzantine consensus protocols that do not rely on a trusted setup and do not use public-key cryptography such as digital signatures. We give an Asynchronous Common Subset (ACS) protocol whose security is only based on...
This paper endeavors to securely implement a Physical Unclonable Function (PUF) for private data generation within Field-Programmable Gate Arrays (FPGAs). SRAM PUFs are commonly utilized due to their use of memory devices for generating secret data, particularly in resource constrained devices. However, their reliance on memory access poses side-channel threats such as data remanence decay and memory-based attacks, and the time required to generate secret data is significant. To address...
Zero-knowledge proof systems are widely used in different applications on the Internet. Among zero-knowledge proof systems, SNARKs are a popular choice because of their fast verification time and small proof size. The efficiency of zero-knowledge systems is crucial for usability, resulting in the development of so-called arithmetization-oriented ciphers. In this work, we introduce Vision Mark-32, a modified instance of Vision defined over binary tower fields, with an optimized number of...
Hash-and-Sign with Retry is a popular technique to design efficient signature schemes from code-based or multivariate assumptions. Contrary to Hash-and-Sign signatures based on preimage-sampleable functions as defined by Gentry, Peikert and Vaikuntanathan (STOC 2008), trapdoor functions in code-based and multivariate schemes are not surjective. Therefore, the standard approach uses random trials. Kosuge and Xagawa (PKC 2024) coined it the Hash-and-Sign with Retry paradigm. As many attacks...
We have investigated both the padding scheme and the applicability of algebraic attacks to both XHash8 and XHash12. The only vulnerability of the padding scheme we can find is plausibly applicable only in the multi-rate setting---for which the authors make no claim---and is safe otherwise. For algebraic attack relying on the computation and exploitation of a Gröbner basis, our survey of the literature suggests to base a security argument on the complexity of the variable elimination step...
This paper proposes general meet-in-the-middle (MitM) attack frameworks for preimage and collision attacks on hash functions based on (generalized) sponge construction. As the first contribution, our MitM preimage attack framework covers a wide range of sponge-based hash functions, especially those with lower claimed security level for preimage compared to their output size. Those hash functions have been very widely standardized (e.g., Ascon-Hash, PHOTON, etc.), but are rarely studied...
We construct a digital signature scheme for images that allows the image to be compressed without invalidating the signature. More specifically, given a JPEG image signed with our signature scheme, a third party can compress the image using JPEG compression, and, as long as the quantization tables only include powers of two, derive a valid signature for the compressed image, without access to the secret signing key, and without interaction with the signer. Our scheme is constructed using a...
We give a new protocol for reliable broadcast with improved communication complexity for long messages. Namely, to reliably broadcast a message a message $m$ over an asynchronous network to a set of $n$ parties, of which fewer than $n/3$ may be corrupt, our protocol achieves a communication complexity of $1.5 |m| n + O( \kappa n^2 \log(n) )$, where $\kappa$ is the output length of a collision-resistant hash function. This result improves on the previously best known bound for long...
Hash chain based password systems are a useful way to guarantee authentication with one-time passwords. The core idea is specified in RFC 1760 as S/Key. At CCS 2017, Kogan et al. introduced T/Key, an improved password system where one-time passwords are only valid for a limited time period. They proved security of their construction in the random oracle model under a basic modeling of the adversary. In this work, we make various advances in the analysis and instantiation of hash chain based...
MRAE security is an important goal for many AEAD applications where the nonce uniqueness cannot be maintained and security risks are significant. However, MRAE schemes can be quite expensive. Two of the SoTA MRAE-secure schemes; Deoxys-II and AES-GCM-SIV rely on internal parallelism and special instructions to achieve competitive performance. However, they both suffer from the same bottleneck, they have at least one call to the underlying primitive that cannot be parallelized to any other...
Timed cryptography studies primitives that retain their security only for a predetermined amount of time, such as proofs of sequential work and time-lock puzzles. This feature has proven to be useful in a large number of practical applications, e.g. randomness generation, sealed-bid auctions, and fair multi-party computation. However, the current state of affairs in timed cryptography is unsatisfactory: Virtually all efficient constructions rely on a single sequentiality assumption, namely...
In this note we propose a variant (with four sub-variants) of the Charles--Goren--Lauter (CGL) hash function using Lattès maps over finite fields. These maps define dynamical systems on the projective line. The underlying idea is that these maps ``hide'' the $j$-invariants in each step in the isogeny chain, similar to the Merkle--Damgård construction. This might circumvent the problem concerning the knowledge of the starting (or ending) curve's endomorphism ring, which is known to create...
In the domain of algorithm substitution attacks (ASAs), we initiate work in a new direction, namely to consider such attacks on algorithms that are public, meaning contain no secret-key material. Examples are hash functions, and verification algorithms of signature schemes and non-interactive arguments. In what we call a PA-SA (Public-Algorithm Substitution Attack), the big-brother adversary replaces the public algorithm $f$ with a subverted algorithm, while retaining a backdoor to the...
Quantum computers have the potential to solve hard problems that are nearly impossible to solve by classical computers, this has sparked a surge of research to apply quantum technology and algorithm against the cryptographic systems to evaluate for its quantum resistance. In the process of selecting post-quantum standards, NIST categorizes security levels based on the complexity that quantum computers would require to crack AES encryption (levels 1, 3 and 5) and SHA-2 or SHA-3 (levels 2 and...
We propose Reckle trees, a new vector commitment based on succinct RECursive arguments and MerKLE trees. Reckle trees' distinguishing feature is their support for succinct batch proofs that are updatable - enabling new applications in the blockchain setting where a proof needs to be computed and efficiently maintained over a moving stream of blocks. Our technical approach is based on embedding the computation of the batch hash inside the recursive Merkle verification via a hash-based...
Over the past ten years, there have been many attacks on symmetric constructions using the statistical properties of random functions. Initially, these attacks targeted iterated hash constructions and their combiners, developing a wide array of methods based on internal collisions and on the average behavior of iterated random functions. More recently, Gilbert et al. (EUROCRYPT 2023) introduced a forgery attack on so-called duplex-based Authenticated Encryption modes which was based on...
Multi-valued Validated Asynchronous Byzantine Agreement ($\mathsf{MVBA}$) is one essential primitive for many distributed protocols, such as asynchronous Byzantine fault-tolerant scenarios like atomic broadcast ($\mathsf{ABC}$), asynchronous distributed key generation, and many others. Recent efforts (Lu et al, PODC' 20) have pushed the communication complexity of $\mathsf{MVBA}$ to optimal $O(\ell n + \lambda n^2)$, which, however, heavily rely on ``heavyweight'' cryptographic tools,...
Fail-stop signatures are digital signatures that allow a signer to prove that a specific forged signature is indeed a forgery. After such a proof is published, the system can be stopped. We introduce a new simple ECDSA fail-stop signature scheme. Our proposal is based on the minimal assumption that an adversary with a quantum computer is not able to break the (second) preimage resistance of a cryptographically-secure hash function. Our scheme is as efficient as traditional ECDSA, does not...
This paper gives the first lattice-based two-round threshold signature based on lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds. Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT ’23) based on specific linear hash functions, which in turns can be seen as a generalization of...
An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for jointly evaluating a Pseudo-Random Function (PRF), where a user has an input x and a server has an input k. At the end of the protocol, the user learns the evaluation of the PRF using key k at the value x, while the server learns nothing about the user's input or output. OPRFs are a prime tool for building secure authentication and key exchange from passwords, private set intersection, private information retrieval,...
Two recent proposals by Bernstein and Pornin emphasize the use of deterministic signatures in DSA and its elliptic curve-based variants. Deterministic signatures derive the required ephemeral key value in a deterministic manner from the message to be signed and the secret key instead of using random number generators. The goal is to prevent severe security issues, such as the straight-forward secret key recovery from low quality random numbers. Recent developments have raised skepticism...
Sponge hashing is a widely used class of cryptographic hash algorithms which underlies the current international hash function standard SHA-3. In a nutshell, a sponge function takes as input a bit-stream of any length and processes it via a simple iterative procedure: it repeatedly feeds each block of the input into a so-called block function, and then produces a digest by once again iterating the block function on the final output bits. While much is known about the post-quantum security of...
It is known that the sponge construction is tightly indifferentiable from a random oracle up to around $2^{c/2}$ queries, where $c$ is the capacity. In particular, it cannot provide generic security better than half of the underlying permutation size. In this paper, we aim to achieve hash function security beating this barrier. We present a hashing mode based on two $b$-bit permutations named the double sponge. The double sponge can be seen as the sponge embedded within the double block...
A $t$-multi-collision-resistant hash function ($t$-MCRH) is a family of shrinking functions for which it is computationally hard to find $t$ distinct inputs mapping to the same output for a function sampled from this family. Several works have shown that $t$-MCRHs are sufficient for many of the applications of collision-resistant hash functions (CRHs), which correspond to the special case of $t = 2$. An important question is hence whether $t$-MCRHs for $t > 2$ are fundamentally weaker...
Ascon, a family of algorithms that supports authenticated encryption and hashing, has been selected as the new standard for lightweight cryptography in the NIST Lightweight Cryptography Project. Ascon’s permutation and authenticated encryption have been actively analyzed, but there are relatively few analyses on the hashing. In this paper, we concentrate on preimage attacks on Ascon-Xof. We focus on linearizing the polynomials leaked by the hash value to find its inverse. In an attack on...
The Nostradamus attack was originally proposed as a security vulnerability for a hash function by Kelsey and Kohno at EUROCRYPT 2006. It requires the attacker to commit to a hash value y of an iterated hash function H. Subsequently, upon being provided with a message prefix P, the adversary’s task is to identify a suffix S such that H(P||S) equals y. Kelsey and Kohno demonstrated a herding attack requiring $O(\sqrt{n}\cdot 2^{2n/3})$ evaluations of the compression function of H, where n...
As an ISO/IEC standard, the hash function RIPEMD-160 has been used to generate the Bitcoin address with SHA-256. However, due to the complex double-branch structure of RIPEMD-160, the best collision attack only reaches 36 out of 80 steps of RIPEMD-160, and the best semi-free-start (SFS) collision attack only reaches 40 steps. To improve the 36-step collision attack proposed at EUROCRYPT 2023, we explored the possibility of using different message differences to increase the number of...