맵캅K2

MAPKAPK2
맵캅K2
Protein MAPKAPK2 PDB 1kwp.png
사용 가능한 구조물
PDB직교 검색: PDBe RCSB
식별자
별칭MAPKAPK2, MAPKAP-K2, MK-2, MK2, 미토겐 활성 단백질 키나제 2, MAPK 활성화 단백질 키나제2
외부 IDOMIM: 602006 MGI: 109298 HomoloGene: 56412 GeneCard: MAPKAPK2
직교체
인간마우스
엔트레스
앙상블
유니프로트
RefSeq(mRNA)

NM_004759
NM_032960

NM_008551

RefSeq(단백질)

NP_004750
NP_116584

NP_032577

위치(UCSC)Chr 1: 206.68 – 206.73MbChr 1: 130.98 – 131.03Mb
PubMed 검색[3][4]
위키다타
인간 보기/편집마우스 보기/편집

MAP키나제 활성 단백질키나제2는 인간에서 MAPKAPK2 유전자에 의해 암호화된 효소다.[5][6][7]

함수

이 유전자는 Ser/Thr 단백질 키나아제 계열의 구성원을 인코딩한다.이 키나제는 p38 MAP 키나제에 의해 직접 인산화를 통해 조절된다.p38 MAP키나아제와 함께 이 키나아제는 스트레스와 염증 반응, 핵 수출, 유전자 발현 조절, 세포 증식 등 많은 세포 과정에 관여하는 것으로 알려져 있다.열충격 단백질 HSP27은 체내 주요 직접 기질로 나타났다.이 유전자에 대해 두 개의 서로 다른 ISO 양식을 인코딩하는 두 개의 대본 변형이 발견되었다.[8]

혈관 장벽

MK2 통로는 액틴과[9] 비멘틴 리모델링을 통해 폐 내피 장벽의 건전성을 유지하고 보수하는 데 핵심적인 역할을 하는 것으로 입증되었다.p38에 의한 인산화 MK2 활성화는 전 세계 주요 사망원인인 급성호흡기조난증후군(ARDS)을 비롯한 60여 가지 의학적 조건과 연관된 혈관장벽을[7] 회복하고 혈관 누출을 수리하는 것으로 나타났다.[10][11]

SASP 시작

MAPKAPK2는 mTOR(라파마이신의 기계적 표적)에 의한 노년기 관련 분비 표현형(SASP)의 시작을 매개한다.[12][13]인터루킨 1 알파(IL1A)는 노년기 세포 표면에서 발견되며, NF-164B와의 양성 피드백 루프에 의해 SASP 인자 생성에 기여한다.[14][15]IL1A에 대한 mRNA의 번역은 mTOR 활동에 크게 의존한다.[16] mTOR 활동은 MAPKAPK2에 의해 중재되는 IL1A의 수준을 증가시킨다.[14]

참고 항목

  • SB 203580, MAPKAPK2 활성화 억제
  • MK2-AP는 p38과 무관하게 MAPKAPK2를 직접 활성화한다.[7]

상호작용

MAPKAPK2는 다음과 상호 작용하는 것으로 나타났다.

참조

  1. ^ a b c GRCh38: 앙상블 릴리스 89: ENSG00000162889 - 앙상블, 2017년 5월
  2. ^ a b c GRCm38: 앙상블 릴리스 89: ENSMUSG000016528 - 앙상블, 2017년 5월
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Zu YL, Wu F, Gilchrist A, Ai Y, Labadia ME, Huang CK (April 1994). "The primary structure of a human MAP kinase activated protein kinase 2". Biochemical and Biophysical Research Communications. 200 (2): 1118–24. doi:10.1006/bbrc.1994.1566. PMID 8179591.
  6. ^ Stokoe D, Caudwell B, Cohen PT, Cohen P (December 1993). "The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2". The Biochemical Journal. 296 ( Pt 3) (Pt 3): 843–9. doi:10.1042/bj2960843. PMC 1137771. PMID 8280084.
  7. ^ a b c Liu T, Warburton RR, Hill NS, Kayyali US (August 2015). "Anthrax lethal toxin-induced lung injury and treatment by activating MK2". Journal of Applied Physiology. 119 (4): 412–9. doi:10.1152/japplphysiol.00335.2015. PMC 4538279. PMID 26066827.
  8. ^ "Entrez Gene: MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2".
  9. ^ Sousa AM, Liu T, Guevara O, Stevens J, Fanburg BL, Gaestel M, et al. (April 2007). "Smooth muscle alpha-actin expression and myofibroblast differentiation by TGFbeta are dependent upon MK2". Journal of Cellular Biochemistry. 100 (6): 1581–92. doi:10.1002/jcb.21154. PMC 2586991. PMID 17163490.
  10. ^ Liu T, Milia E, Warburton RR, Hill NS, Gaestel M, Kayyali US (April 2012). "Anthrax lethal toxin disrupts the endothelial permeability barrier through blocking p38 signaling". Journal of Cellular Physiology. 227 (4): 1438–45. doi:10.1002/jcp.22859. PMC 4254851. PMID 21618534.
  11. ^ Pham T, Rubenfeld GD (April 2017). "Fifty Years of Research in ARDS. The Epidemiology of Acute Respiratory Distress Syndrome. A 50th Birthday Review". American Journal of Respiratory and Critical Care Medicine. 195 (7): 860–870. doi:10.1164/rccm.201609-1773CP. PMID 28157386. S2CID 23293950.
  12. ^ Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, et al. (May 2020). "Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research". Nutrients. 12 (5): 1344. doi:10.3390/nu12051344. PMC 7285205. PMID 32397145.
  13. ^ Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette F, Topisirovic I, Hulea L (2019). "mTOR as a central regulator of lifespan and aging". F1000Research. 8: 998. doi:10.12688/f1000research.17196.1. PMC 6611156. PMID 31316753.
  14. ^ a b Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. (August 2015). "MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation". Nature Cell Biology. 17 (8): 1049–61. doi:10.1038/ncb3195. PMC 4691706. PMID 26147250.
  15. ^ Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, et al. (June 2017). "Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism". Aging Cell. 16 (3): 564–574. doi:10.1111/acel.12587. PMC 5418203. PMID 28371119.
  16. ^ Wang R, Sunchu B, Perez VI (August 2017). "Rapamycin and the inhibition of the secretory phenotype". Experimental Gerontology. 94: 89–92. doi:10.1016/j.exger.2017.01.026. PMID 28167236. S2CID 4960885.
  17. ^ a b Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, et al. (February 2001). "p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils". The Journal of Biological Chemistry. 276 (5): 3517–23. doi:10.1074/jbc.M005953200. PMID 11042204.
  18. ^ Janknecht R (November 2001). "Cell type-specific inhibition of the ETS transcription factor ER81 by mitogen-activated protein kinase-activated protein kinase 2". The Journal of Biological Chemistry. 276 (45): 41856–61. doi:10.1074/jbc.M106630200. PMID 11551945.
  19. ^ a b Yannoni YM, Gaestel M, Lin LL (April 2004). "P66(ShcA) interacts with MAPKAP kinase 2 and regulates its activity". FEBS Letters. 564 (1–2): 205–11. doi:10.1016/S0014-5793(04)00351-5. PMID 15094067.
  20. ^ Dondelinger Y, Delanghe T, Rojas-Rivera D, Priem D, Delvaeye T, Bruggeman I, et al. (October 2017). "MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death". Nature Cell Biology. 19 (10): 1237–1247. doi:10.1038/ncb3608. PMID 28920952. S2CID 25779284.

추가 읽기