Punto di flesso
Un punto di flesso per una curva o funzione è un punto in cui si manifesta un cambiamento di convessità o di segno di curvatura. La definizione e lo studio dei punti di flesso fa largo uso del calcolo infinitesimale e più precisamente del concetto di derivata.
Definizione
[modifica | modifica wikitesto]Un punto di flesso è definito in modo diverso a seconda del contesto.
- Per una funzione derivabile su intervallo, un punto di flesso è un punto tale che ha un estremo locale isolato in Se tutti gli estremi di sono isolati, allora questa definizione è equivalente a dire che il punto è un punto di flesso se la retta tangente al punto del grafico della funzione "attraversa" il grafico (cioè si incrocia con questo) ed è anche equivalente a dire che il punto di flesso è un punto in cui cambia la concavità della funzione.
- Se è derivabile due volte su la precedente definizione è equivalente a dire che il punto è un punto di flesso se ha in uno zero isolato e cambia segno.
- Per una curva descritta da equazioni parametriche un punto di flesso è un punto della curva in cui la curvatura orientata cambia segno ed esiste un intorno di in cui è l'unico punto della curva in cui la curvatura orientata cambia segno.
- Per una curva algebrica un punto di flesso è un punto non singolare della curva in cui la molteplicità dell'intersezione della retta tangente in con la curva è dispari e maggiore di
Un punto di flesso per una funzione derivabile può essere ascendente o discendente:
- è ascendente quando ha un minimo locale nel punto di flesso,
- è discendente quando ha un massimo locale nel punto di flesso.
Si osservi che il grafico di una funzione è un caso particolare di curva descritta da equazioni parametriche.
Se gli estremi di non sono tutti isolati il seguente esempio mostra che non è equivalente chiedere che la retta tangente attraversi il grafico o che la funzione cambi concavità. Si consideri le funzioni e , entrambe estese in ponendo I grafici di entrambe le funzioni hanno retta tangente in Nel caso della la tangente attraversa il grafico della funzione, nel caso della la tangente resta al di sotto del grafico della funzione. In entrambi i casi la funzione cambia concavità infinite volte in qualsiasi intorno di
Funzioni
[modifica | modifica wikitesto]Flessi orizzontali, obliqui e verticali
[modifica | modifica wikitesto]Sia un punto di flesso per una funzione Se la tangente nel punto è orizzontale (cioè se ) allora si parla di flesso orizzontale. Altrimenti si parla di flesso obliquo.
Se la funzione è derivabile due volte in tutti i punti in un intorno di , e la derivata prima tende a o a in , si parla di "tangente verticale", e il punto è di flesso se la derivata seconda cambia segno e non si annulla in . In tal caso si parla di flesso verticale.
Precisazioni
[modifica | modifica wikitesto]Il "cambiare segno" della derivata seconda è da intendersi di un intorno: nel caso della funzione, questa ha flesso in se esiste un intorno di tale che per ogni di con si ha (rispettivamente ) e per ogni di con si ha (rispettivamente ).
Metodi risolutivi
[modifica | modifica wikitesto]Per verificare analiticamente se una funzione possiede punti di flesso, sotto l'ipotesi di esistenza della derivata seconda, si ricercano innanzitutto i valori di per i quali quest'ultima si annulla:
La condizione che è necessaria ma non sufficiente a garantire l'esistenza di un flesso in , perché la derivata seconda potrebbe non cambiare segno intorno a : questo accade se la funzione presenta nel punto un contatto "superiore al secondo ordine" con la propria retta tangente.
Quindi si prosegue nell'analisi verificando che la derivata seconda cambi segno. Questo accade precisamente quando la prima derivata non nulla calcolata nel punto successiva alla seconda è una derivata dispari.
Proprietà
[modifica | modifica wikitesto]- Un punto di flesso è un punto stazionario se e solo se è orizzontale.
- In un punto di flesso la funzione ammette un "contatto almeno del secondo ordine" con la retta tangente.
- Esistono funzioni che non presentano punti di flesso: ad esempio quelle aventi come diagrammi linee rette, parabole e le funzioni polinomiali date da espressioni come per intero positivo o da espressioni riconducibili a queste mediante traslazioni, omotetie, ... .
Generalizzazioni
[modifica | modifica wikitesto]Caso complesso
[modifica | modifica wikitesto]Nel caso di funzioni o curve considerate a variabile complessa, non è possibile dare una definizione del tutto analoga, perché i numeri complessi non hanno un ordinamento, e quindi non ha senso parlare di "cambiamento di segno" della derivata o curvatura.
Per questo motivo solitamente si definisce un punto di flesso per una curva o funzione come un punto in cui la retta tangente ha "molteplicità di intersezione" (cioè "ordine di contatto") con la curva almeno 3. Tale molteplicità è "di solito" 2, quindi i punti di flesso sono punti "eccezionali" della curva.
Voci correlate
[modifica | modifica wikitesto]Altri progetti
[modifica | modifica wikitesto]- Wikimedia Commons contiene immagini o altri file sul punto di flesso
Collegamenti esterni
[modifica | modifica wikitesto]- flesso, su Treccani.it – Enciclopedie on line, Istituto dell'Enciclopedia Italiana.
- flesso, in Enciclopedia della Matematica, Istituto dell'Enciclopedia Italiana, 2013.
- (EN) Eric W. Weisstein, Punto di flesso, su MathWorld, Wolfram Research.
- (EN) Punto di flesso, su Encyclopaedia of Mathematics, Springer e European Mathematical Society.